Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
|
2 |
|
ftc1.a |
|
3 |
|
ftc1.b |
|
4 |
|
ftc1.le |
|
5 |
|
ftc1.s |
|
6 |
|
ftc1.d |
|
7 |
|
ftc1.i |
|
8 |
|
ftc1.c |
|
9 |
|
ftc1.f |
|
10 |
|
ftc1.j |
|
11 |
|
ftc1.k |
|
12 |
|
ftc1.l |
|
13 |
|
ftc1.h |
|
14 |
|
ftc1.e |
|
15 |
|
ftc1.r |
|
16 |
|
ftc1.fc |
|
17 |
|
ftc1.x1 |
|
18 |
|
ftc1.x2 |
|
19 |
|
ftc1.y1 |
|
20 |
|
ftc1.y2 |
|
21 |
|
ovexd |
|
22 |
2
|
rexrd |
|
23 |
|
elicc2 |
|
24 |
2 3 23
|
syl2anc |
|
25 |
17 24
|
mpbid |
|
26 |
25
|
simp2d |
|
27 |
|
iooss1 |
|
28 |
22 26 27
|
syl2anc |
|
29 |
3
|
rexrd |
|
30 |
|
elicc2 |
|
31 |
2 3 30
|
syl2anc |
|
32 |
19 31
|
mpbid |
|
33 |
32
|
simp3d |
|
34 |
|
iooss2 |
|
35 |
29 33 34
|
syl2anc |
|
36 |
28 35
|
sstrd |
|
37 |
36 5
|
sstrd |
|
38 |
37
|
sselda |
|
39 |
1 2 3 4 5 6 7 8 9 10 11 12
|
ftc1lem3 |
|
40 |
39
|
ffvelrnda |
|
41 |
38 40
|
syldan |
|
42 |
|
ioombl |
|
43 |
42
|
a1i |
|
44 |
|
fvexd |
|
45 |
39
|
feqmptd |
|
46 |
45 7
|
eqeltrrd |
|
47 |
37 43 44 46
|
iblss |
|
48 |
5 8
|
sseldd |
|
49 |
39 48
|
ffvelrnd |
|
50 |
49
|
adantr |
|
51 |
|
fconstmpt |
|
52 |
|
mblvol |
|
53 |
42 52
|
ax-mp |
|
54 |
|
ioossicc |
|
55 |
54
|
a1i |
|
56 |
|
iccssre |
|
57 |
2 3 56
|
syl2anc |
|
58 |
57 17
|
sseldd |
|
59 |
57 19
|
sseldd |
|
60 |
|
iccmbl |
|
61 |
58 59 60
|
syl2anc |
|
62 |
|
mblss |
|
63 |
61 62
|
syl |
|
64 |
|
mblvol |
|
65 |
61 64
|
syl |
|
66 |
|
iccvolcl |
|
67 |
58 59 66
|
syl2anc |
|
68 |
65 67
|
eqeltrrd |
|
69 |
|
ovolsscl |
|
70 |
55 63 68 69
|
syl3anc |
|
71 |
53 70
|
eqeltrid |
|
72 |
|
iblconst |
|
73 |
43 71 49 72
|
syl3anc |
|
74 |
51 73
|
eqeltrrid |
|
75 |
41 47 50 74
|
iblsub |
|
76 |
21 75
|
itgcl |
|
77 |
76
|
adantr |
|
78 |
59 58
|
resubcld |
|
79 |
78
|
adantr |
|
80 |
79
|
recnd |
|
81 |
58 59
|
posdifd |
|
82 |
81
|
biimpa |
|
83 |
82
|
gt0ne0d |
|
84 |
77 80 83
|
divcld |
|
85 |
49
|
adantr |
|
86 |
|
ltle |
|
87 |
58 59 86
|
syl2anc |
|
88 |
87
|
imp |
|
89 |
1 2 3 4 5 6 7 39 17 19
|
ftc1lem1 |
|
90 |
88 89
|
syldan |
|
91 |
41 50
|
npcand |
|
92 |
91
|
itgeq2dv |
|
93 |
41 50
|
subcld |
|
94 |
93 75 50 74
|
itgadd |
|
95 |
92 94
|
eqtr3d |
|
96 |
95
|
adantr |
|
97 |
|
itgconst |
|
98 |
43 71 49 97
|
syl3anc |
|
99 |
98
|
adantr |
|
100 |
58
|
adantr |
|
101 |
59
|
adantr |
|
102 |
|
ovolioo |
|
103 |
100 101 88 102
|
syl3anc |
|
104 |
53 103
|
eqtrid |
|
105 |
104
|
oveq2d |
|
106 |
99 105
|
eqtrd |
|
107 |
106
|
oveq2d |
|
108 |
90 96 107
|
3eqtrd |
|
109 |
108
|
oveq1d |
|
110 |
85 80
|
mulcld |
|
111 |
77 110 80 83
|
divdird |
|
112 |
85 80 83
|
divcan4d |
|
113 |
112
|
oveq2d |
|
114 |
109 111 113
|
3eqtrd |
|
115 |
84 85 114
|
mvrraddd |
|
116 |
115
|
fveq2d |
|
117 |
77 80 83
|
absdivd |
|
118 |
|
0re |
|
119 |
|
ltle |
|
120 |
118 79 119
|
sylancr |
|
121 |
82 120
|
mpd |
|
122 |
79 121
|
absidd |
|
123 |
122
|
oveq2d |
|
124 |
116 117 123
|
3eqtrd |
|
125 |
76
|
abscld |
|
126 |
125
|
adantr |
|
127 |
93
|
abscld |
|
128 |
21 75
|
iblabs |
|
129 |
127 128
|
itgrecl |
|
130 |
129
|
adantr |
|
131 |
14
|
rpred |
|
132 |
78 131
|
remulcld |
|
133 |
132
|
adantr |
|
134 |
93 75
|
itgabs |
|
135 |
134
|
adantr |
|
136 |
82 104
|
breqtrrd |
|
137 |
131
|
adantr |
|
138 |
|
fconstmpt |
|
139 |
131
|
recnd |
|
140 |
|
iblconst |
|
141 |
43 71 139 140
|
syl3anc |
|
142 |
138 141
|
eqeltrrid |
|
143 |
137 142 127 128
|
iblsub |
|
144 |
143
|
adantr |
|
145 |
6 48
|
sseldd |
|
146 |
15
|
rpred |
|
147 |
145 146
|
resubcld |
|
148 |
147
|
adantr |
|
149 |
58
|
adantr |
|
150 |
37 6
|
sstrd |
|
151 |
150
|
sselda |
|
152 |
58 145 146
|
absdifltd |
|
153 |
18 152
|
mpbid |
|
154 |
153
|
simpld |
|
155 |
154
|
adantr |
|
156 |
|
eliooord |
|
157 |
156
|
adantl |
|
158 |
157
|
simpld |
|
159 |
148 149 151 155 158
|
lttrd |
|
160 |
59
|
adantr |
|
161 |
145 146
|
readdcld |
|
162 |
161
|
adantr |
|
163 |
157
|
simprd |
|
164 |
59 145 146
|
absdifltd |
|
165 |
20 164
|
mpbid |
|
166 |
165
|
simprd |
|
167 |
166
|
adantr |
|
168 |
151 160 162 163 167
|
lttrd |
|
169 |
145
|
adantr |
|
170 |
146
|
adantr |
|
171 |
151 169 170
|
absdifltd |
|
172 |
159 168 171
|
mpbir2and |
|
173 |
|
fvoveq1 |
|
174 |
173
|
breq1d |
|
175 |
174
|
imbrov2fvoveq |
|
176 |
16
|
ralrimiva |
|
177 |
176
|
adantr |
|
178 |
175 177 38
|
rspcdva |
|
179 |
172 178
|
mpd |
|
180 |
|
difrp |
|
181 |
127 137 180
|
syl2anc |
|
182 |
179 181
|
mpbid |
|
183 |
182
|
adantlr |
|
184 |
136 144 183
|
itggt0 |
|
185 |
137 142 127 128
|
itgsub |
|
186 |
185
|
adantr |
|
187 |
|
itgconst |
|
188 |
43 71 139 187
|
syl3anc |
|
189 |
188
|
adantr |
|
190 |
104
|
oveq2d |
|
191 |
78
|
recnd |
|
192 |
139 191
|
mulcomd |
|
193 |
192
|
adantr |
|
194 |
189 190 193
|
3eqtrd |
|
195 |
194
|
oveq1d |
|
196 |
186 195
|
eqtrd |
|
197 |
184 196
|
breqtrd |
|
198 |
129 132
|
posdifd |
|
199 |
198
|
biimpar |
|
200 |
197 199
|
syldan |
|
201 |
126 130 133 135 200
|
lelttrd |
|
202 |
77
|
abscld |
|
203 |
131
|
adantr |
|
204 |
|
ltdivmul |
|
205 |
202 203 79 82 204
|
syl112anc |
|
206 |
201 205
|
mpbird |
|
207 |
124 206
|
eqbrtrd |
|