Metamath Proof Explorer


Theorem ftc1lem5

Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 14-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses ftc1.g G=xABAxFtdt
ftc1.a φA
ftc1.b φB
ftc1.le φAB
ftc1.s φABD
ftc1.d φD
ftc1.i φF𝐿1
ftc1.c φCAB
ftc1.f φFKCnPLC
ftc1.j J=L𝑡
ftc1.k K=L𝑡D
ftc1.l L=TopOpenfld
ftc1.h H=zABCGzGCzC
ftc1.e φE+
ftc1.r φR+
ftc1.fc φyDyC<RFyFC<E
ftc1.x1 φXAB
ftc1.x2 φXC<R
Assertion ftc1lem5 φXCHXFC<E

Proof

Step Hyp Ref Expression
1 ftc1.g G=xABAxFtdt
2 ftc1.a φA
3 ftc1.b φB
4 ftc1.le φAB
5 ftc1.s φABD
6 ftc1.d φD
7 ftc1.i φF𝐿1
8 ftc1.c φCAB
9 ftc1.f φFKCnPLC
10 ftc1.j J=L𝑡
11 ftc1.k K=L𝑡D
12 ftc1.l L=TopOpenfld
13 ftc1.h H=zABCGzGCzC
14 ftc1.e φE+
15 ftc1.r φR+
16 ftc1.fc φyDyC<RFyFC<E
17 ftc1.x1 φXAB
18 ftc1.x2 φXC<R
19 iccssre ABAB
20 2 3 19 syl2anc φAB
21 20 17 sseldd φX
22 ioossicc ABAB
23 22 8 sselid φCAB
24 20 23 sseldd φC
25 21 24 lttri2d φXCX<CC<X
26 25 biimpa φXCX<CC<X
27 17 adantr φX<CXAB
28 21 adantr φX<CX
29 simpr φX<CX<C
30 28 29 ltned φX<CXC
31 eldifsn XABCXABXC
32 27 30 31 sylanbrc φX<CXABC
33 fveq2 z=XGz=GX
34 33 oveq1d z=XGzGC=GXGC
35 oveq1 z=XzC=XC
36 34 35 oveq12d z=XGzGCzC=GXGCXC
37 ovex GXGCXCV
38 36 13 37 fvmpt XABCHX=GXGCXC
39 32 38 syl φX<CHX=GXGCXC
40 1 2 3 4 5 6 7 8 9 10 11 12 ftc1lem3 φF:D
41 1 2 3 4 5 6 7 40 ftc1lem2 φG:AB
42 41 17 ffvelcdmd φGX
43 41 23 ffvelcdmd φGC
44 42 43 subcld φGXGC
45 44 adantr φX<CGXGC
46 21 recnd φX
47 24 recnd φC
48 46 47 subcld φXC
49 48 adantr φX<CXC
50 46 47 subeq0ad φXC=0X=C
51 50 necon3bid φXC0XC
52 51 biimpar φXCXC0
53 30 52 syldan φX<CXC0
54 45 49 53 div2negd φX<CGXGCXC=GXGCXC
55 42 43 negsubdi2d φGXGC=GCGX
56 46 47 negsubdi2d φXC=CX
57 55 56 oveq12d φGXGCXC=GCGXCX
58 57 adantr φX<CGXGCXC=GCGXCX
59 39 54 58 3eqtr2d φX<CHX=GCGXCX
60 59 fvoveq1d φX<CHXFC=GCGXCXFC
61 47 subidd φCC=0
62 61 abs00bd φCC=0
63 15 rpgt0d φ0<R
64 62 63 eqbrtrd φCC<R
65 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 64 ftc1lem4 φX<CGCGXCXFC<E
66 60 65 eqbrtrd φX<CHXFC<E
67 17 adantr φC<XXAB
68 24 adantr φC<XC
69 simpr φC<XC<X
70 68 69 gtned φC<XXC
71 67 70 31 sylanbrc φC<XXABC
72 71 38 syl φC<XHX=GXGCXC
73 72 fvoveq1d φC<XHXFC=GXGCXCFC
74 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 23 64 17 18 ftc1lem4 φC<XGXGCXCFC<E
75 73 74 eqbrtrd φC<XHXFC<E
76 66 75 jaodan φX<CC<XHXFC<E
77 26 76 syldan φXCHXFC<E