Metamath Proof Explorer


Theorem ftc1lem5

Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 14-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses ftc1.g G = x A B A x F t dt
ftc1.a φ A
ftc1.b φ B
ftc1.le φ A B
ftc1.s φ A B D
ftc1.d φ D
ftc1.i φ F 𝐿 1
ftc1.c φ C A B
ftc1.f φ F K CnP L C
ftc1.j J = L 𝑡
ftc1.k K = L 𝑡 D
ftc1.l L = TopOpen fld
ftc1.h H = z A B C G z G C z C
ftc1.e φ E +
ftc1.r φ R +
ftc1.fc φ y D y C < R F y F C < E
ftc1.x1 φ X A B
ftc1.x2 φ X C < R
Assertion ftc1lem5 φ X C H X F C < E

Proof

Step Hyp Ref Expression
1 ftc1.g G = x A B A x F t dt
2 ftc1.a φ A
3 ftc1.b φ B
4 ftc1.le φ A B
5 ftc1.s φ A B D
6 ftc1.d φ D
7 ftc1.i φ F 𝐿 1
8 ftc1.c φ C A B
9 ftc1.f φ F K CnP L C
10 ftc1.j J = L 𝑡
11 ftc1.k K = L 𝑡 D
12 ftc1.l L = TopOpen fld
13 ftc1.h H = z A B C G z G C z C
14 ftc1.e φ E +
15 ftc1.r φ R +
16 ftc1.fc φ y D y C < R F y F C < E
17 ftc1.x1 φ X A B
18 ftc1.x2 φ X C < R
19 iccssre A B A B
20 2 3 19 syl2anc φ A B
21 20 17 sseldd φ X
22 ioossicc A B A B
23 22 8 sseldi φ C A B
24 20 23 sseldd φ C
25 21 24 lttri2d φ X C X < C C < X
26 25 biimpa φ X C X < C C < X
27 17 adantr φ X < C X A B
28 21 adantr φ X < C X
29 simpr φ X < C X < C
30 28 29 ltned φ X < C X C
31 eldifsn X A B C X A B X C
32 27 30 31 sylanbrc φ X < C X A B C
33 fveq2 z = X G z = G X
34 33 oveq1d z = X G z G C = G X G C
35 oveq1 z = X z C = X C
36 34 35 oveq12d z = X G z G C z C = G X G C X C
37 ovex G X G C X C V
38 36 13 37 fvmpt X A B C H X = G X G C X C
39 32 38 syl φ X < C H X = G X G C X C
40 1 2 3 4 5 6 7 8 9 10 11 12 ftc1lem3 φ F : D
41 1 2 3 4 5 6 7 40 ftc1lem2 φ G : A B
42 41 17 ffvelrnd φ G X
43 41 23 ffvelrnd φ G C
44 42 43 subcld φ G X G C
45 44 adantr φ X < C G X G C
46 21 recnd φ X
47 24 recnd φ C
48 46 47 subcld φ X C
49 48 adantr φ X < C X C
50 46 47 subeq0ad φ X C = 0 X = C
51 50 necon3bid φ X C 0 X C
52 51 biimpar φ X C X C 0
53 30 52 syldan φ X < C X C 0
54 45 49 53 div2negd φ X < C G X G C X C = G X G C X C
55 42 43 negsubdi2d φ G X G C = G C G X
56 46 47 negsubdi2d φ X C = C X
57 55 56 oveq12d φ G X G C X C = G C G X C X
58 57 adantr φ X < C G X G C X C = G C G X C X
59 39 54 58 3eqtr2d φ X < C H X = G C G X C X
60 59 fvoveq1d φ X < C H X F C = G C G X C X F C
61 47 subidd φ C C = 0
62 61 abs00bd φ C C = 0
63 15 rpgt0d φ 0 < R
64 62 63 eqbrtrd φ C C < R
65 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 64 ftc1lem4 φ X < C G C G X C X F C < E
66 60 65 eqbrtrd φ X < C H X F C < E
67 17 adantr φ C < X X A B
68 24 adantr φ C < X C
69 simpr φ C < X C < X
70 68 69 gtned φ C < X X C
71 67 70 31 sylanbrc φ C < X X A B C
72 71 38 syl φ C < X H X = G X G C X C
73 72 fvoveq1d φ C < X H X F C = G X G C X C F C
74 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 23 64 17 18 ftc1lem4 φ C < X G X G C X C F C < E
75 73 74 eqbrtrd φ C < X H X F C < E
76 66 75 jaodan φ X < C C < X H X F C < E
77 26 76 syldan φ X C H X F C < E