| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc1.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 2 |
|
ftc1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 3 |
|
ftc1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
|
ftc1.le |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 5 |
|
ftc1.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 ) |
| 6 |
|
ftc1.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
| 7 |
|
ftc1.i |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
| 8 |
|
ftc1.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 9 |
|
ftc1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ 𝐶 ) ) |
| 10 |
|
ftc1.j |
⊢ 𝐽 = ( 𝐿 ↾t ℝ ) |
| 11 |
|
ftc1.k |
⊢ 𝐾 = ( 𝐿 ↾t 𝐷 ) |
| 12 |
|
ftc1.l |
⊢ 𝐿 = ( TopOpen ‘ ℂfld ) |
| 13 |
|
ftc1.h |
⊢ 𝐻 = ( 𝑧 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↦ ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) ) |
| 14 |
|
ftc1.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 15 |
|
ftc1.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 16 |
|
ftc1.fc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) ) |
| 17 |
|
ftc1.x1 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 18 |
|
ftc1.x2 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐶 ) ) < 𝑅 ) |
| 19 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 20 |
2 3 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 21 |
20 17
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 22 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 23 |
22 8
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 24 |
20 23
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 25 |
21 24
|
lttri2d |
⊢ ( 𝜑 → ( 𝑋 ≠ 𝐶 ↔ ( 𝑋 < 𝐶 ∨ 𝐶 < 𝑋 ) ) ) |
| 26 |
25
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝐶 ) → ( 𝑋 < 𝐶 ∨ 𝐶 < 𝑋 ) ) |
| 27 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 28 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → 𝑋 ∈ ℝ ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → 𝑋 < 𝐶 ) |
| 30 |
28 29
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → 𝑋 ≠ 𝐶 ) |
| 31 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ↔ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑋 ≠ 𝐶 ) ) |
| 32 |
27 30 31
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → 𝑋 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑧 = 𝑋 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) = ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) ) |
| 35 |
|
oveq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 − 𝐶 ) = ( 𝑋 − 𝐶 ) ) |
| 36 |
34 35
|
oveq12d |
⊢ ( 𝑧 = 𝑋 → ( ( ( 𝐺 ‘ 𝑧 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑧 − 𝐶 ) ) = ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) ) |
| 37 |
|
ovex |
⊢ ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) ∈ V |
| 38 |
36 13 37
|
fvmpt |
⊢ ( 𝑋 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) → ( 𝐻 ‘ 𝑋 ) = ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) ) |
| 39 |
32 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( 𝐻 ‘ 𝑋 ) = ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) ) |
| 40 |
1 2 3 4 5 6 7 8 9 10 11 12
|
ftc1lem3 |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℂ ) |
| 41 |
1 2 3 4 5 6 7 40
|
ftc1lem2 |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 42 |
41 17
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ ℂ ) |
| 43 |
41 23
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ℂ ) |
| 44 |
42 43
|
subcld |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) ∈ ℂ ) |
| 46 |
21
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 47 |
24
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 48 |
46 47
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐶 ) ∈ ℂ ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( 𝑋 − 𝐶 ) ∈ ℂ ) |
| 50 |
46 47
|
subeq0ad |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐶 ) = 0 ↔ 𝑋 = 𝐶 ) ) |
| 51 |
50
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐶 ) ≠ 0 ↔ 𝑋 ≠ 𝐶 ) ) |
| 52 |
51
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝐶 ) → ( 𝑋 − 𝐶 ) ≠ 0 ) |
| 53 |
30 52
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( 𝑋 − 𝐶 ) ≠ 0 ) |
| 54 |
45 49 53
|
div2negd |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( - ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / - ( 𝑋 − 𝐶 ) ) = ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) ) |
| 55 |
42 43
|
negsubdi2d |
⊢ ( 𝜑 → - ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) = ( ( 𝐺 ‘ 𝐶 ) − ( 𝐺 ‘ 𝑋 ) ) ) |
| 56 |
46 47
|
negsubdi2d |
⊢ ( 𝜑 → - ( 𝑋 − 𝐶 ) = ( 𝐶 − 𝑋 ) ) |
| 57 |
55 56
|
oveq12d |
⊢ ( 𝜑 → ( - ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / - ( 𝑋 − 𝐶 ) ) = ( ( ( 𝐺 ‘ 𝐶 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝐶 − 𝑋 ) ) ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( - ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / - ( 𝑋 − 𝐶 ) ) = ( ( ( 𝐺 ‘ 𝐶 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝐶 − 𝑋 ) ) ) |
| 59 |
39 54 58
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( 𝐻 ‘ 𝑋 ) = ( ( ( 𝐺 ‘ 𝐶 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝐶 − 𝑋 ) ) ) |
| 60 |
59
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( abs ‘ ( ( ( ( 𝐺 ‘ 𝐶 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝐶 − 𝑋 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 61 |
47
|
subidd |
⊢ ( 𝜑 → ( 𝐶 − 𝐶 ) = 0 ) |
| 62 |
61
|
abs00bd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐶 − 𝐶 ) ) = 0 ) |
| 63 |
15
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝑅 ) |
| 64 |
62 63
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐶 − 𝐶 ) ) < 𝑅 ) |
| 65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 64
|
ftc1lem4 |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝐶 ) − ( 𝐺 ‘ 𝑋 ) ) / ( 𝐶 − 𝑋 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| 66 |
60 65
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐶 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| 67 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 68 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → 𝐶 ∈ ℝ ) |
| 69 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → 𝐶 < 𝑋 ) |
| 70 |
68 69
|
gtned |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → 𝑋 ≠ 𝐶 ) |
| 71 |
67 70 31
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → 𝑋 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐶 } ) ) |
| 72 |
71 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → ( 𝐻 ‘ 𝑋 ) = ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) ) |
| 73 |
72
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 23 64 17 18
|
ftc1lem4 |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → ( abs ‘ ( ( ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝐶 ) ) / ( 𝑋 − 𝐶 ) ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| 75 |
73 74
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐶 < 𝑋 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| 76 |
66 75
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑋 < 𝐶 ∨ 𝐶 < 𝑋 ) ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |
| 77 |
26 76
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝐶 ) → ( abs ‘ ( ( 𝐻 ‘ 𝑋 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝐸 ) |