| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fthcomf.1 |
|
| 2 |
|
fthcomf.2 |
|
| 3 |
|
fthcomf.3 |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
1
|
ad2antrr |
|
| 9 |
|
fthfunc |
|
| 10 |
9
|
ssbri |
|
| 11 |
8 10
|
syl |
|
| 12 |
|
simplr1 |
|
| 13 |
|
simplr2 |
|
| 14 |
|
simplr3 |
|
| 15 |
|
simprl |
|
| 16 |
|
simprr |
|
| 17 |
4 5 6 7 11 12 13 14 15 16
|
funcco |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
2
|
ad2antrr |
|
| 23 |
1 10
|
syl |
|
| 24 |
23 2
|
funchomf |
|
| 25 |
24
|
homfeqbas |
|
| 26 |
25
|
ad2antrr |
|
| 27 |
12 26
|
eleqtrd |
|
| 28 |
13 26
|
eleqtrd |
|
| 29 |
14 26
|
eleqtrd |
|
| 30 |
24
|
ad2antrr |
|
| 31 |
4 5 19 30 12 13
|
homfeqval |
|
| 32 |
15 31
|
eleqtrd |
|
| 33 |
4 5 19 30 13 14
|
homfeqval |
|
| 34 |
16 33
|
eleqtrd |
|
| 35 |
18 19 20 21 22 27 28 29 32 34
|
funcco |
|
| 36 |
3 17 35
|
3eqtr4d |
|
| 37 |
|
eqid |
|
| 38 |
23
|
funcrcl2 |
|
| 39 |
38
|
ad2antrr |
|
| 40 |
4 5 6 39 12 13 14 15 16
|
catcocl |
|
| 41 |
2
|
funcrcl2 |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
18 19 20 42 27 28 29 32 34
|
catcocl |
|
| 44 |
4 5 19 30 12 14
|
homfeqval |
|
| 45 |
43 44
|
eleqtrrd |
|
| 46 |
4 5 37 8 12 14 40 45
|
fthi |
|
| 47 |
36 46
|
mpbid |
|
| 48 |
47
|
ralrimivva |
|
| 49 |
48
|
ralrimivvva |
|
| 50 |
|
eqidd |
|
| 51 |
6 20 5 50 25 24
|
comfeq |
|
| 52 |
49 51
|
mpbird |
|