Metamath Proof Explorer


Theorem fucco

Description: Value of the composition of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fucco.q Q=CFuncCatD
fucco.n N=CNatD
fucco.a A=BaseC
fucco.o ·˙=compD
fucco.x ˙=compQ
fucco.f φRFNG
fucco.g φSGNH
Assertion fucco φSFG˙HR=xASx1stFx1stGx·˙1stHxRx

Proof

Step Hyp Ref Expression
1 fucco.q Q=CFuncCatD
2 fucco.n N=CNatD
3 fucco.a A=BaseC
4 fucco.o ·˙=compD
5 fucco.x ˙=compQ
6 fucco.f φRFNG
7 fucco.g φSGNH
8 eqid CFuncD=CFuncD
9 2 natrcl RFNGFCFuncDGCFuncD
10 6 9 syl φFCFuncDGCFuncD
11 10 simpld φFCFuncD
12 funcrcl FCFuncDCCatDCat
13 11 12 syl φCCatDCat
14 13 simpld φCCat
15 13 simprd φDCat
16 1 8 2 3 4 14 15 5 fuccofval φ˙=vCFuncD×CFuncD,hCFuncD1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
17 fvexd φv=FGh=H1stvV
18 simprl φv=FGh=Hv=FG
19 18 fveq2d φv=FGh=H1stv=1stFG
20 op1stg FCFuncDGCFuncD1stFG=F
21 10 20 syl φ1stFG=F
22 21 adantr φv=FGh=H1stFG=F
23 19 22 eqtrd φv=FGh=H1stv=F
24 fvexd φv=FGh=Hf=F2ndvV
25 18 adantr φv=FGh=Hf=Fv=FG
26 25 fveq2d φv=FGh=Hf=F2ndv=2ndFG
27 op2ndg FCFuncDGCFuncD2ndFG=G
28 10 27 syl φ2ndFG=G
29 28 ad2antrr φv=FGh=Hf=F2ndFG=G
30 26 29 eqtrd φv=FGh=Hf=F2ndv=G
31 simpr φv=FGh=Hf=Fg=Gg=G
32 simprr φv=FGh=Hh=H
33 32 ad2antrr φv=FGh=Hf=Fg=Gh=H
34 31 33 oveq12d φv=FGh=Hf=Fg=GgNh=GNH
35 simplr φv=FGh=Hf=Fg=Gf=F
36 35 31 oveq12d φv=FGh=Hf=Fg=GfNg=FNG
37 35 fveq2d φv=FGh=Hf=Fg=G1stf=1stF
38 37 fveq1d φv=FGh=Hf=Fg=G1stfx=1stFx
39 31 fveq2d φv=FGh=Hf=Fg=G1stg=1stG
40 39 fveq1d φv=FGh=Hf=Fg=G1stgx=1stGx
41 38 40 opeq12d φv=FGh=Hf=Fg=G1stfx1stgx=1stFx1stGx
42 33 fveq2d φv=FGh=Hf=Fg=G1sth=1stH
43 42 fveq1d φv=FGh=Hf=Fg=G1sthx=1stHx
44 41 43 oveq12d φv=FGh=Hf=Fg=G1stfx1stgx·˙1sthx=1stFx1stGx·˙1stHx
45 44 oveqd φv=FGh=Hf=Fg=Gbx1stfx1stgx·˙1sthxax=bx1stFx1stGx·˙1stHxax
46 45 mpteq2dv φv=FGh=Hf=Fg=GxAbx1stfx1stgx·˙1sthxax=xAbx1stFx1stGx·˙1stHxax
47 34 36 46 mpoeq123dv φv=FGh=Hf=Fg=GbgNh,afNgxAbx1stfx1stgx·˙1sthxax=bGNH,aFNGxAbx1stFx1stGx·˙1stHxax
48 24 30 47 csbied2 φv=FGh=Hf=F2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax=bGNH,aFNGxAbx1stFx1stGx·˙1stHxax
49 17 23 48 csbied2 φv=FGh=H1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax=bGNH,aFNGxAbx1stFx1stGx·˙1stHxax
50 opelxpi FCFuncDGCFuncDFGCFuncD×CFuncD
51 10 50 syl φFGCFuncD×CFuncD
52 2 natrcl SGNHGCFuncDHCFuncD
53 7 52 syl φGCFuncDHCFuncD
54 53 simprd φHCFuncD
55 ovex GNHV
56 ovex FNGV
57 55 56 mpoex bGNH,aFNGxAbx1stFx1stGx·˙1stHxaxV
58 57 a1i φbGNH,aFNGxAbx1stFx1stGx·˙1stHxaxV
59 16 49 51 54 58 ovmpod φFG˙H=bGNH,aFNGxAbx1stFx1stGx·˙1stHxax
60 simprl φb=Sa=Rb=S
61 60 fveq1d φb=Sa=Rbx=Sx
62 simprr φb=Sa=Ra=R
63 62 fveq1d φb=Sa=Rax=Rx
64 61 63 oveq12d φb=Sa=Rbx1stFx1stGx·˙1stHxax=Sx1stFx1stGx·˙1stHxRx
65 64 mpteq2dv φb=Sa=RxAbx1stFx1stGx·˙1stHxax=xASx1stFx1stGx·˙1stHxRx
66 3 fvexi AV
67 66 mptex xASx1stFx1stGx·˙1stHxRxV
68 67 a1i φxASx1stFx1stGx·˙1stHxRxV
69 59 65 7 6 68 ovmpod φSFG˙HR=xASx1stFx1stGx·˙1stHxRx