Description: The opposite functor of a full functor is also full. Proposition 3.43(d) in Adamek p. 39. (Contributed by Mario Carneiro, 27-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fulloppc.o | |
|
fulloppc.p | |
||
fulloppc.f | |
||
Assertion | fulloppc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fulloppc.o | |
|
2 | fulloppc.p | |
|
3 | fulloppc.f | |
|
4 | fullfunc | |
|
5 | 4 | ssbri | |
6 | 3 5 | syl | |
7 | 1 2 6 | funcoppc | |
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 3 | adantr | |
12 | simprr | |
|
13 | simprl | |
|
14 | 8 9 10 11 12 13 | fullfo | |
15 | forn | |
|
16 | 14 15 | syl | |
17 | ovtpos | |
|
18 | 17 | rneqi | |
19 | 9 2 | oppchom | |
20 | 16 18 19 | 3eqtr4g | |
21 | 20 | ralrimivva | |
22 | 1 8 | oppcbas | |
23 | eqid | |
|
24 | 22 23 | isfull | |
25 | 7 21 24 | sylanbrc | |