Metamath Proof Explorer


Theorem fun2dmnop0

Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fun2dmnop (with the less restrictive requirement that ( G \ { (/) } ) needs to be a function instead of G ) is useful for proofs for extensible structures, see structn0fun . (Contributed by AV, 21-Sep-2020) (Revised by AV, 7-Jun-2021)

Ref Expression
Hypotheses fun2dmnop.a AV
fun2dmnop.b BV
Assertion fun2dmnop0 FunGABABdomG¬GV×V

Proof

Step Hyp Ref Expression
1 fun2dmnop.a AV
2 fun2dmnop.b BV
3 simpl1 FunGABABdomGGVFunG
4 dmexg GVdomGV
5 4 adantl FunGABABdomGGVdomGV
6 1 2 prss AdomGBdomGABdomG
7 simpl AdomGBdomGAdomG
8 6 7 sylbir ABdomGAdomG
9 8 3ad2ant3 FunGABABdomGAdomG
10 9 adantr FunGABABdomGGVAdomG
11 simpr AdomGBdomGBdomG
12 6 11 sylbir ABdomGBdomG
13 12 3ad2ant3 FunGABABdomGBdomG
14 13 adantr FunGABABdomGGVBdomG
15 simpl2 FunGABABdomGGVAB
16 5 10 14 15 nehash2 FunGABABdomGGV2domG
17 fundmge2nop0 FunG2domG¬GV×V
18 3 16 17 syl2anc FunGABABdomGGV¬GV×V
19 18 ex FunGABABdomGGV¬GV×V
20 prcnel ¬GV¬GV×V
21 19 20 pm2.61d1 FunGABABdomG¬GV×V