Metamath Proof Explorer


Theorem fundmge2nop0

Description: A function with a domain containing (at least) two different elements is not an ordered pair. This stronger version of fundmge2nop (with the less restrictive requirement that ( G \ { (/) } ) needs to be a function instead of G ) is useful for proofs for extensible structures, see structn0fun . (Contributed by AV, 12-Oct-2020) (Revised by AV, 7-Jun-2021) (Proof shortened by AV, 15-Nov-2021)

Ref Expression
Assertion fundmge2nop0 Fun G 2 dom G ¬ G V × V

Proof

Step Hyp Ref Expression
1 dmexg G V dom G V
2 hashge2el2dif dom G V 2 dom G a dom G b dom G a b
3 2 ex dom G V 2 dom G a dom G b dom G a b
4 1 3 syl G V 2 dom G a dom G b dom G a b
5 df-ne a b ¬ a = b
6 elvv G V × V x y G = x y
7 difeq1 G = x y G = x y
8 7 funeqd G = x y Fun G Fun x y
9 opwo0id x y = x y
10 9 eqcomi x y = x y
11 10 funeqi Fun x y Fun x y
12 dmeq G = x y dom G = dom x y
13 12 eleq2d G = x y a dom G a dom x y
14 12 eleq2d G = x y b dom G b dom x y
15 13 14 anbi12d G = x y a dom G b dom G a dom x y b dom x y
16 eqid x y = x y
17 vex x V
18 vex y V
19 16 17 18 funopdmsn Fun x y a dom x y b dom x y a = b
20 19 3expb Fun x y a dom x y b dom x y a = b
21 20 expcom a dom x y b dom x y Fun x y a = b
22 15 21 syl6bi G = x y a dom G b dom G Fun x y a = b
23 22 com23 G = x y Fun x y a dom G b dom G a = b
24 11 23 syl5bi G = x y Fun x y a dom G b dom G a = b
25 8 24 sylbid G = x y Fun G a dom G b dom G a = b
26 25 impcomd G = x y a dom G b dom G Fun G a = b
27 26 exlimivv x y G = x y a dom G b dom G Fun G a = b
28 27 com12 a dom G b dom G Fun G x y G = x y a = b
29 6 28 syl5bi a dom G b dom G Fun G G V × V a = b
30 29 con3d a dom G b dom G Fun G ¬ a = b ¬ G V × V
31 30 ex a dom G b dom G Fun G ¬ a = b ¬ G V × V
32 31 com23 a dom G b dom G ¬ a = b Fun G ¬ G V × V
33 5 32 syl5bi a dom G b dom G a b Fun G ¬ G V × V
34 33 rexlimivv a dom G b dom G a b Fun G ¬ G V × V
35 4 34 syl6 G V 2 dom G Fun G ¬ G V × V
36 35 com13 Fun G 2 dom G G V ¬ G V × V
37 36 imp Fun G 2 dom G G V ¬ G V × V
38 prcnel ¬ G V ¬ G V × V
39 37 38 pm2.61d1 Fun G 2 dom G ¬ G V × V