Metamath Proof Explorer


Theorem funcestrcsetclem3

Description: Lemma 3 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
Assertion funcestrcsetclem3 φF:BC

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 1 3 5 estrcbasbas φxBBasexU
8 2 5 setcbas φU=BaseS
9 8 eqcomd φBaseS=U
10 9 adantr φxBBaseS=U
11 7 10 eleqtrrd φxBBasexBaseS
12 11 4 eleqtrrdi φxBBasexC
13 6 12 fmpt3d φF:BC