Metamath Proof Explorer


Theorem funcf2

Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses funcixp.b B=BaseD
funcixp.h H=HomD
funcixp.j J=HomE
funcixp.f φFDFuncEG
funcf2.x φXB
funcf2.y φYB
Assertion funcf2 φXGY:XHYFXJFY

Proof

Step Hyp Ref Expression
1 funcixp.b B=BaseD
2 funcixp.h H=HomD
3 funcixp.j J=HomE
4 funcixp.f φFDFuncEG
5 funcf2.x φXB
6 funcf2.y φYB
7 df-ov XGY=GXY
8 1 2 3 4 funcixp φGzB×BF1stzJF2ndzHz
9 5 6 opelxpd φXYB×B
10 2fveq3 z=XYF1stz=F1stXY
11 2fveq3 z=XYF2ndz=F2ndXY
12 10 11 oveq12d z=XYF1stzJF2ndz=F1stXYJF2ndXY
13 fveq2 z=XYHz=HXY
14 df-ov XHY=HXY
15 13 14 eqtr4di z=XYHz=XHY
16 12 15 oveq12d z=XYF1stzJF2ndzHz=F1stXYJF2ndXYXHY
17 16 fvixp GzB×BF1stzJF2ndzHzXYB×BGXYF1stXYJF2ndXYXHY
18 8 9 17 syl2anc φGXYF1stXYJF2ndXYXHY
19 7 18 eqeltrid φXGYF1stXYJF2ndXYXHY
20 op1stg XBYB1stXY=X
21 20 fveq2d XBYBF1stXY=FX
22 op2ndg XBYB2ndXY=Y
23 22 fveq2d XBYBF2ndXY=FY
24 21 23 oveq12d XBYBF1stXYJF2ndXY=FXJFY
25 5 6 24 syl2anc φF1stXYJF2ndXY=FXJFY
26 25 oveq1d φF1stXYJF2ndXYXHY=FXJFYXHY
27 19 26 eleqtrd φXGYFXJFYXHY
28 elmapi XGYFXJFYXHYXGY:XHYFXJFY
29 27 28 syl φXGY:XHYFXJFY