Metamath Proof Explorer


Theorem funmo

Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998) (Proof shortened by SN, 19-Dec-2024)

Ref Expression
Assertion funmo FunF*yAFy

Proof

Step Hyp Ref Expression
1 dffun6 FunFRelFx*yxFy
2 1 simplbi FunFRelF
3 brrelex1 RelFAFyAV
4 3 ex RelFAFyAV
5 2 4 syl FunFAFyAV
6 5 ancrd FunFAFyAVAFy
7 6 alrimiv FunFyAFyAVAFy
8 1 simprbi FunFx*yxFy
9 breq1 x=AxFyAFy
10 9 mobidv x=A*yxFy*yAFy
11 10 spcgv AVx*yxFy*yAFy
12 8 11 syl5com FunFAV*yAFy
13 moanimv *yAVAFyAV*yAFy
14 12 13 sylibr FunF*yAVAFy
15 moim yAFyAVAFy*yAVAFy*yAFy
16 7 14 15 sylc FunF*yAFy