Metamath Proof Explorer


Theorem funmoOLD

Description: Obsolete version of funmo as of 19-Dec-2024. (Contributed by NM, 24-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion funmoOLD FunF*yAFy

Proof

Step Hyp Ref Expression
1 dffun6 FunFRelFx*yxFy
2 1 simplbi FunFRelF
3 brrelex1 RelFAFyAV
4 3 ex RelFAFyAV
5 2 4 syl FunFAFyAV
6 5 ancrd FunFAFyAVAFy
7 6 alrimiv FunFyAFyAVAFy
8 breq1 x=AxFyAFy
9 8 mobidv x=A*yxFy*yAFy
10 9 imbi2d x=AFunF*yxFyFunF*yAFy
11 1 simprbi FunFx*yxFy
12 11 19.21bi FunF*yxFy
13 10 12 vtoclg AVFunF*yAFy
14 13 com12 FunFAV*yAFy
15 moanimv *yAVAFyAV*yAFy
16 14 15 sylibr FunF*yAVAFy
17 moim yAFyAVAFy*yAVAFy*yAFy
18 7 16 17 sylc FunF*yAFy