Metamath Proof Explorer


Theorem funopdmsn

Description: The domain of a function which is an ordered pair is a singleton. (Contributed by AV, 15-Nov-2021) (Avoid depending on this detail.)

Ref Expression
Hypotheses funopdmsn.g G=XY
funopdmsn.x XV
funopdmsn.y YW
Assertion funopdmsn FunGAdomGBdomGA=B

Proof

Step Hyp Ref Expression
1 funopdmsn.g G=XY
2 funopdmsn.x XV
3 funopdmsn.y YW
4 1 funeqi FunGFunXY
5 2 elexi XV
6 3 elexi YV
7 5 6 funop FunXYxX=xXY=xx
8 4 7 bitri FunGxX=xXY=xx
9 1 eqcomi XY=G
10 9 eqeq1i XY=xxG=xx
11 dmeq G=xxdomG=domxx
12 vex xV
13 12 dmsnop domxx=x
14 11 13 eqtrdi G=xxdomG=x
15 eleq2 domG=xAdomGAx
16 eleq2 domG=xBdomGBx
17 15 16 anbi12d domG=xAdomGBdomGAxBx
18 elsni AxA=x
19 elsni BxB=x
20 eqtr3 A=xB=xA=B
21 18 19 20 syl2an AxBxA=B
22 17 21 biimtrdi domG=xAdomGBdomGA=B
23 14 22 syl G=xxAdomGBdomGA=B
24 10 23 sylbi XY=xxAdomGBdomGA=B
25 24 adantl X=xXY=xxAdomGBdomGA=B
26 25 exlimiv xX=xXY=xxAdomGBdomGA=B
27 8 26 sylbi FunGAdomGBdomGA=B
28 27 3impib FunGAdomGBdomGA=B