Metamath Proof Explorer


Theorem fv2ndcnv

Description: The value of the converse of 2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020)

Ref Expression
Assertion fv2ndcnv XVYA2ndX×A-1Y=XY

Proof

Step Hyp Ref Expression
1 snidg XVXX
2 1 anim1i XVYAXXYA
3 eqid Y=Y
4 2 3 jctir XVYAXXYAY=Y
5 2ndconst XV2ndX×A:X×A1-1 ontoA
6 5 adantr XVYA2ndX×A:X×A1-1 ontoA
7 f1ocnv 2ndX×A:X×A1-1 ontoA2ndX×A-1:A1-1 ontoX×A
8 f1ofn 2ndX×A-1:A1-1 ontoX×A2ndX×A-1FnA
9 6 7 8 3syl XVYA2ndX×A-1FnA
10 fnbrfvb 2ndX×A-1FnAYA2ndX×A-1Y=XYY2ndX×A-1XY
11 9 10 sylancom XVYA2ndX×A-1Y=XYY2ndX×A-1XY
12 opex XYV
13 brcnvg YAXYVY2ndX×A-1XYXY2ndX×AY
14 12 13 mpan2 YAY2ndX×A-1XYXY2ndX×AY
15 14 adantl XVYAY2ndX×A-1XYXY2ndX×AY
16 brres YAXY2ndX×AYXYX×AXY2ndY
17 16 adantl XVYAXY2ndX×AYXYX×AXY2ndY
18 opelxp XYX×AXXYA
19 18 anbi1i XYX×AXY2ndYXXYAXY2ndY
20 br2ndeqg XVYAXY2ndYY=Y
21 20 anbi2d XVYAXXYAXY2ndYXXYAY=Y
22 19 21 bitrid XVYAXYX×AXY2ndYXXYAY=Y
23 17 22 bitrd XVYAXY2ndX×AYXXYAY=Y
24 15 23 bitrd XVYAY2ndX×A-1XYXXYAY=Y
25 11 24 bitrd XVYA2ndX×A-1Y=XYXXYAY=Y
26 4 25 mpbird XVYA2ndX×A-1Y=XY