Metamath Proof Explorer


Theorem fvelimab

Description: Function value in an image. (Contributed by NM, 20-Jan-2007) (Proof shortened by Andrew Salmon, 22-Oct-2011) (Revised by David Abernethy, 17-Dec-2011)

Ref Expression
Assertion fvelimab FFnABACFBxBFx=C

Proof

Step Hyp Ref Expression
1 elex CFBCV
2 1 anim2i FFnABACFBFFnABACV
3 fvex FxV
4 eleq1 Fx=CFxVCV
5 3 4 mpbii Fx=CCV
6 5 rexlimivw xBFx=CCV
7 6 anim2i FFnABAxBFx=CFFnABACV
8 eleq1 y=CyFBCFB
9 eqeq2 y=CFx=yFx=C
10 9 rexbidv y=CxBFx=yxBFx=C
11 8 10 bibi12d y=CyFBxBFx=yCFBxBFx=C
12 11 imbi2d y=CFFnABAyFBxBFx=yFFnABACFBxBFx=C
13 fnfun FFnAFunF
14 fndm FFnAdomF=A
15 14 sseq2d FFnABdomFBA
16 15 biimpar FFnABABdomF
17 dfimafn FunFBdomFFB=y|xBFx=y
18 13 16 17 syl2an2r FFnABAFB=y|xBFx=y
19 18 eqabrd FFnABAyFBxBFx=y
20 12 19 vtoclg CVFFnABACFBxBFx=C
21 20 impcom FFnABACVCFBxBFx=C
22 2 7 21 pm5.21nd FFnABACFBxBFx=C