Metamath Proof Explorer


Theorem fveqdmss

Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the domain of the function is contained in the domain of the class. (Contributed by AV, 28-Jan-2020)

Ref Expression
Hypothesis fveqdmss.1 D=domB
Assertion fveqdmss FunBranBxDAx=BxDdomA

Proof

Step Hyp Ref Expression
1 fveqdmss.1 D=domB
2 fveq2 x=aAx=Aa
3 fveq2 x=aBx=Ba
4 2 3 eqeq12d x=aAx=BxAa=Ba
5 4 rspcva aDxDAx=BxAa=Ba
6 nelrnfvne FunBadomBranBBa
7 n0 BabbBa
8 eleq2 Ba=AabBabAa
9 8 eqcoms Aa=BabBabAa
10 elfvdm bAaadomA
11 9 10 syl6bi Aa=BabBaadomA
12 11 com12 bBaAa=BaadomA
13 12 exlimiv bbBaAa=BaadomA
14 7 13 sylbi BaAa=BaadomA
15 6 14 syl FunBadomBranBAa=BaadomA
16 15 3exp FunBadomBranBAa=BaadomA
17 16 com12 adomBFunBranBAa=BaadomA
18 17 1 eleq2s aDFunBranBAa=BaadomA
19 18 com24 aDAa=BaranBFunBadomA
20 19 adantr aDxDAx=BxAa=BaranBFunBadomA
21 5 20 mpd aDxDAx=BxranBFunBadomA
22 21 ex aDxDAx=BxranBFunBadomA
23 22 com23 aDranBxDAx=BxFunBadomA
24 23 com14 FunBranBxDAx=BxaDadomA
25 24 3imp FunBranBxDAx=BxaDadomA
26 25 ssrdv FunBranBxDAx=BxDdomA