| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz1 |
|
| 2 |
|
elfz1 |
|
| 3 |
1 2
|
bi2anan9 |
|
| 4 |
|
an6 |
|
| 5 |
|
zre |
|
| 6 |
|
zre |
|
| 7 |
5 6
|
anim12i |
|
| 8 |
|
zre |
|
| 9 |
|
zre |
|
| 10 |
8 9
|
anim12i |
|
| 11 |
|
le2add |
|
| 12 |
7 10 11
|
syl2an |
|
| 13 |
12
|
impr |
|
| 14 |
13
|
3adantr3 |
|
| 15 |
14
|
adantlr |
|
| 16 |
|
zre |
|
| 17 |
|
zre |
|
| 18 |
16 17
|
anim12i |
|
| 19 |
|
le2add |
|
| 20 |
10 18 19
|
syl2anr |
|
| 21 |
20
|
impr |
|
| 22 |
21
|
3adantr2 |
|
| 23 |
22
|
adantll |
|
| 24 |
|
zaddcl |
|
| 25 |
|
zaddcl |
|
| 26 |
|
zaddcl |
|
| 27 |
|
elfz |
|
| 28 |
24 25 26 27
|
syl3an |
|
| 29 |
28
|
3expb |
|
| 30 |
29
|
ancoms |
|
| 31 |
30
|
3ad2antr1 |
|
| 32 |
15 23 31
|
mpbir2and |
|
| 33 |
32
|
ex |
|
| 34 |
33
|
an4s |
|
| 35 |
4 34
|
biimtrid |
|
| 36 |
3 35
|
sylbid |
|