Metamath Proof Explorer


Theorem fzaddel

Description: Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005)

Ref Expression
Assertion fzaddel MNJKJMNJ+KM+KN+K

Proof

Step Hyp Ref Expression
1 simpl JKJ
2 zaddcl JKJ+K
3 1 2 2thd JKJJ+K
4 3 adantl MNJKJJ+K
5 zre MM
6 zre JJ
7 zre KK
8 leadd1 MJKMJM+KJ+K
9 5 6 7 8 syl3an MJKMJM+KJ+K
10 9 3expb MJKMJM+KJ+K
11 10 adantlr MNJKMJM+KJ+K
12 zre NN
13 leadd1 JNKJNJ+KN+K
14 6 12 7 13 syl3an JNKJNJ+KN+K
15 14 3com12 NJKJNJ+KN+K
16 15 3expb NJKJNJ+KN+K
17 16 adantll MNJKJNJ+KN+K
18 4 11 17 3anbi123d MNJKJMJJNJ+KM+KJ+KJ+KN+K
19 elfz1 MNJMNJMJJN
20 19 adantr MNJKJMNJMJJN
21 zaddcl MKM+K
22 zaddcl NKN+K
23 elfz1 M+KN+KJ+KM+KN+KJ+KM+KJ+KJ+KN+K
24 21 22 23 syl2an MKNKJ+KM+KN+KJ+KM+KJ+KJ+KN+K
25 24 anandirs MNKJ+KM+KN+KJ+KM+KJ+KJ+KN+K
26 25 adantrl MNJKJ+KM+KN+KJ+KM+KJ+KJ+KN+K
27 18 20 26 3bitr4d MNJKJMNJ+KM+KN+K