Metamath Proof Explorer


Theorem fzofi

Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzofi M..^NFin

Proof

Step Hyp Ref Expression
1 fzoval NM..^N=MN1
2 1 adantl MNM..^N=MN1
3 fzfi MN1Fin
4 2 3 eqeltrdi MNM..^NFin
5 fzof ..^:×𝒫
6 5 fdmi dom..^=×
7 6 ndmov ¬MNM..^N=
8 0fin Fin
9 7 8 eqeltrdi ¬MNM..^NFin
10 4 9 pm2.61i M..^NFin