Metamath Proof Explorer


Theorem fzosplitprm1

Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof shortened by AV, 25-Jun-2022)

Ref Expression
Assertion fzosplitprm1 ABA<BA..^B+1=A..^B1B1B

Proof

Step Hyp Ref Expression
1 simp1 ABA<BA
2 peano2zm BB1
3 2 3ad2ant2 ABA<BB1
4 zltlem1 ABA<BAB1
5 4 biimp3a ABA<BAB1
6 eluz2 B1AAB1AB1
7 1 3 5 6 syl3anbrc ABA<BB1A
8 fzosplitpr B1AA..^B-1+2=A..^B1B1B-1+1
9 7 8 syl ABA<BA..^B-1+2=A..^B1B1B-1+1
10 zcn BB
11 1cnd B1
12 2cnd B2
13 10 11 12 subadd23d BB-1+2=B+2-1
14 2m1e1 21=1
15 14 oveq2i B+2-1=B+1
16 13 15 eqtr2di BB+1=B-1+2
17 16 oveq2d BA..^B+1=A..^B-1+2
18 npcan1 BB-1+1=B
19 10 18 syl BB-1+1=B
20 19 eqcomd BB=B-1+1
21 20 preq2d BB1B=B1B-1+1
22 21 uneq2d BA..^B1B1B=A..^B1B1B-1+1
23 17 22 eqeq12d BA..^B+1=A..^B1B1BA..^B-1+2=A..^B1B1B-1+1
24 23 3ad2ant2 ABA<BA..^B+1=A..^B1B1BA..^B-1+2=A..^B1B1B-1+1
25 9 24 mpbird ABA<BA..^B+1=A..^B1B1B