Metamath Proof Explorer


Theorem fzuntd

Description: Union of two adjacent finite sets of sequential integers that share a common endpoint. (Contributed by RP, 14-Dec-2024)

Ref Expression
Hypotheses fzuntd.k φK
fzuntd.m φM
fzuntd.n φN
fzuntd.km φKM
fzuntd.mn φMN
Assertion fzuntd φKMMN=KN

Proof

Step Hyp Ref Expression
1 fzuntd.k φK
2 fzuntd.m φM
3 fzuntd.n φN
4 fzuntd.km φKM
5 fzuntd.mn φMN
6 simprl φjjMj
7 6 zred φjjMj
8 2 zred φM
9 8 adantr φjjMM
10 3 zred φN
11 10 adantr φjjMN
12 simprr φjjMjM
13 5 adantr φjjMMN
14 7 9 11 12 13 letrd φjjMjN
15 14 expr φjjMjN
16 15 anim2d φjKjjMKjjN
17 1 zred φK
18 17 adantr φjMjK
19 8 adantr φjMjM
20 simprl φjMjj
21 20 zred φjMjj
22 4 adantr φjMjKM
23 simprr φjMjMj
24 18 19 21 22 23 letrd φjMjKj
25 24 expr φjMjKj
26 25 anim1d φjMjjNKjjN
27 16 26 jaod φjKjjMMjjNKjjN
28 orc KjKjMj
29 orc KjKjjN
30 28 29 jca KjKjMjKjjN
31 30 ad2antrl φjKjjNKjMjKjjN
32 simpr φjj
33 32 zred φjj
34 8 adantr φjM
35 33 34 letrid φjjMMj
36 35 adantr φjKjjNjMMj
37 simprr φjKjjNjN
38 37 olcd φjKjjNjMjN
39 36 38 jca φjKjjNjMMjjMjN
40 orddi KjjMMjjNKjMjKjjNjMMjjMjN
41 31 39 40 sylanbrc φjKjjNKjjMMjjN
42 41 ex φjKjjNKjjMMjjN
43 27 42 impbid φjKjjMMjjNKjjN
44 43 pm5.32da φjKjjMMjjNjKjjN
45 elfz1 KMjKMjKjjM
46 1 2 45 syl2anc φjKMjKjjM
47 3anass jKjjMjKjjM
48 46 47 bitrdi φjKMjKjjM
49 elfz1 MNjMNjMjjN
50 2 3 49 syl2anc φjMNjMjjN
51 3anass jMjjNjMjjN
52 50 51 bitrdi φjMNjMjjN
53 48 52 orbi12d φjKMjMNjKjjMjMjjN
54 elun jKMMNjKMjMN
55 andi jKjjMMjjNjKjjMjMjjN
56 53 54 55 3bitr4g φjKMMNjKjjMMjjN
57 elfz1 KNjKNjKjjN
58 1 3 57 syl2anc φjKNjKjjN
59 3anass jKjjNjKjjN
60 58 59 bitrdi φjKNjKjjN
61 44 56 60 3bitr4d φjKMMNjKN
62 61 eqrdv φKMMN=KN