| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzuntd.k |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 2 |
|
fzuntd.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
fzuntd.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 4 |
|
fzuntd.km |
⊢ ( 𝜑 → 𝐾 ≤ 𝑀 ) |
| 5 |
|
fzuntd.mn |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 6 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑗 ∈ ℤ ) |
| 7 |
6
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑗 ∈ ℝ ) |
| 8 |
2
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑀 ∈ ℝ ) |
| 10 |
3
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑁 ∈ ℝ ) |
| 12 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑗 ≤ 𝑀 ) |
| 13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑀 ≤ 𝑁 ) |
| 14 |
7 9 11 12 13
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑗 ≤ 𝑁 ) |
| 15 |
14
|
expr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ≤ 𝑀 → 𝑗 ≤ 𝑁 ) ) |
| 16 |
15
|
anim2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 17 |
1
|
zred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ) ) → 𝐾 ∈ ℝ ) |
| 19 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ) ) → 𝑀 ∈ ℝ ) |
| 20 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ) ) → 𝑗 ∈ ℤ ) |
| 21 |
20
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ) ) → 𝑗 ∈ ℝ ) |
| 22 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ) ) → 𝐾 ≤ 𝑀 ) |
| 23 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ) ) → 𝑀 ≤ 𝑗 ) |
| 24 |
18 19 21 22 23
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ) ) → 𝐾 ≤ 𝑗 ) |
| 25 |
24
|
expr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑀 ≤ 𝑗 → 𝐾 ≤ 𝑗 ) ) |
| 26 |
25
|
anim1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 27 |
16 26
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 28 |
|
orc |
⊢ ( 𝐾 ≤ 𝑗 → ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ) |
| 29 |
|
orc |
⊢ ( 𝐾 ≤ 𝑗 → ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) |
| 30 |
28 29
|
jca |
⊢ ( 𝐾 ≤ 𝑗 → ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ) |
| 31 |
30
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℤ ) |
| 33 |
32
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℝ ) |
| 34 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 35 |
33 34
|
letrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ) |
| 37 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → 𝑗 ≤ 𝑁 ) |
| 38 |
37
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝑗 ≤ 𝑀 ∨ 𝑗 ≤ 𝑁 ) ) |
| 39 |
36 38
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝑗 ≤ 𝑀 ∨ 𝑗 ≤ 𝑁 ) ) ) |
| 40 |
|
orddi |
⊢ ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ∧ ( ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝑗 ≤ 𝑀 ∨ 𝑗 ≤ 𝑁 ) ) ) ) |
| 41 |
31 39 40
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 42 |
41
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 43 |
27 42
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 44 |
43
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 45 |
|
elfz1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ) |
| 46 |
1 2 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ) |
| 47 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ) |
| 48 |
46 47
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ) ) |
| 49 |
|
elfz1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 50 |
2 3 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 51 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 52 |
50 51
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 53 |
48 52
|
orbi12d |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ∨ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ∨ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
| 54 |
|
elun |
⊢ ( 𝑗 ∈ ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ∨ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 55 |
|
andi |
⊢ ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ∨ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 56 |
53 54 55
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
| 57 |
|
elfz1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 58 |
1 3 57
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 59 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 60 |
58 59
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 61 |
44 56 60
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ 𝑗 ∈ ( 𝐾 ... 𝑁 ) ) ) |
| 62 |
61
|
eqrdv |
⊢ ( 𝜑 → ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) = ( 𝐾 ... 𝑁 ) ) |