| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzunt1d.k | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 2 |  | fzunt1d.l | ⊢ ( 𝜑  →  𝐿  ∈  ℤ ) | 
						
							| 3 |  | fzunt1d.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | fzunt1d.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 5 |  | fzunt1d.km | ⊢ ( 𝜑  →  𝐾  ≤  𝑀 ) | 
						
							| 6 |  | fzunt1d.ml | ⊢ ( 𝜑  →  𝑀  ≤  𝐿 ) | 
						
							| 7 |  | fzunt1d.ln | ⊢ ( 𝜑  →  𝐿  ≤  𝑁 ) | 
						
							| 8 |  | zre | ⊢ ( 𝑗  ∈  ℤ  →  𝑗  ∈  ℝ ) | 
						
							| 9 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝑗  ∈  ℝ ) | 
						
							| 10 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝐿  ∈  ℤ ) | 
						
							| 11 | 10 | zred | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝐿  ∈  ℝ ) | 
						
							| 12 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝑁  ∈  ℤ ) | 
						
							| 13 | 12 | zred | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝑁  ∈  ℝ ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝑗  ≤  𝐿 ) | 
						
							| 15 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝐿  ≤  𝑁 ) | 
						
							| 16 | 9 11 13 14 15 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝑗  ≤  𝑁 ) | 
						
							| 17 | 16 | ex | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( 𝑗  ≤  𝐿  →  𝑗  ≤  𝑁 ) ) | 
						
							| 18 | 17 | anim2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  →  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 19 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝐾  ∈  ℤ ) | 
						
							| 20 | 19 | zred | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝐾  ∈  ℝ ) | 
						
							| 21 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝑀  ∈  ℤ ) | 
						
							| 22 | 21 | zred | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝑀  ∈  ℝ ) | 
						
							| 23 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝑗  ∈  ℝ ) | 
						
							| 24 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝐾  ≤  𝑀 ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝑀  ≤  𝑗 ) | 
						
							| 26 | 20 22 23 24 25 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝐾  ≤  𝑗 ) | 
						
							| 27 | 26 | ex | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( 𝑀  ≤  𝑗  →  𝐾  ≤  𝑗 ) ) | 
						
							| 28 | 27 | anim1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  →  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 29 | 18 28 | jaod | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 30 |  | orc | ⊢ ( 𝐾  ≤  𝑗  →  ( 𝐾  ≤  𝑗  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 31 |  | orc | ⊢ ( 𝐾  ≤  𝑗  →  ( 𝐾  ≤  𝑗  ∨  𝑗  ≤  𝑁 ) ) | 
						
							| 32 | 30 31 | jca | ⊢ ( 𝐾  ≤  𝑗  →  ( ( 𝐾  ≤  𝑗  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝐾  ≤  𝑗  ∨  𝑗  ≤  𝑁 ) ) ) | 
						
							| 33 | 32 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( ( 𝐾  ≤  𝑗  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝐾  ≤  𝑗  ∨  𝑗  ≤  𝑁 ) ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  𝑗  ∈  ℝ ) | 
						
							| 35 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  𝐿  ∈  ℤ ) | 
						
							| 36 | 35 | zred | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  𝐿  ∈  ℝ ) | 
						
							| 37 | 14 | orcd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  ( 𝑗  ≤  𝐿  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 38 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝐿  ≤  𝑗 )  →  𝑀  ∈  ℤ ) | 
						
							| 39 | 38 | zred | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝐿  ≤  𝑗 )  →  𝑀  ∈  ℝ ) | 
						
							| 40 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝐿  ≤  𝑗 )  →  𝐿  ∈  ℤ ) | 
						
							| 41 | 40 | zred | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝐿  ≤  𝑗 )  →  𝐿  ∈  ℝ ) | 
						
							| 42 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝐿  ≤  𝑗 )  →  𝑗  ∈  ℝ ) | 
						
							| 43 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝐿  ≤  𝑗 )  →  𝑀  ≤  𝐿 ) | 
						
							| 44 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝐿  ≤  𝑗 )  →  𝐿  ≤  𝑗 ) | 
						
							| 45 | 39 41 42 43 44 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝐿  ≤  𝑗 )  →  𝑀  ≤  𝑗 ) | 
						
							| 46 | 45 | olcd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝐿  ≤  𝑗 )  →  ( 𝑗  ≤  𝐿  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 47 | 34 36 37 46 | lecasei | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( 𝑗  ≤  𝐿  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( 𝑗  ≤  𝐿  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 49 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  𝑗  ≤  𝑁 ) | 
						
							| 50 | 49 | olcd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( 𝑗  ≤  𝐿  ∨  𝑗  ≤  𝑁 ) ) | 
						
							| 51 | 48 50 | jca | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( ( 𝑗  ≤  𝐿  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝑗  ≤  𝐿  ∨  𝑗  ≤  𝑁 ) ) ) | 
						
							| 52 |  | orddi | ⊢ ( ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  ↔  ( ( ( 𝐾  ≤  𝑗  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝐾  ≤  𝑗  ∨  𝑗  ≤  𝑁 ) )  ∧  ( ( 𝑗  ≤  𝐿  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝑗  ≤  𝐿  ∨  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 53 | 33 51 52 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  →  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 55 | 29 54 | impbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  ↔  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 56 | 8 55 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  ( ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  ↔  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 57 | 56 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑗  ∈  ℤ  ∧  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 58 |  | elfz1 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝐾 ... 𝐿 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 ) ) ) | 
						
							| 59 | 1 2 58 | syl2anc | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝐾 ... 𝐿 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 ) ) ) | 
						
							| 60 |  | 3anass | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 ) ) ) | 
						
							| 61 | 59 60 | bitrdi | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝐾 ... 𝐿 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 ) ) ) ) | 
						
							| 62 |  | elfz1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 63 | 3 4 62 | syl2anc | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 64 |  | 3anass | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 65 | 63 64 | bitrdi | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 66 | 61 65 | orbi12d | ⊢ ( 𝜑  →  ( ( 𝑗  ∈  ( 𝐾 ... 𝐿 )  ∨  𝑗  ∈  ( 𝑀 ... 𝑁 ) )  ↔  ( ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 ) )  ∨  ( 𝑗  ∈  ℤ  ∧  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) ) | 
						
							| 67 |  | elun | ⊢ ( 𝑗  ∈  ( ( 𝐾 ... 𝐿 )  ∪  ( 𝑀 ... 𝑁 ) )  ↔  ( 𝑗  ∈  ( 𝐾 ... 𝐿 )  ∨  𝑗  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 68 |  | andi | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) )  ↔  ( ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 ) )  ∨  ( 𝑗  ∈  ℤ  ∧  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 69 | 66 67 68 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( ( 𝐾 ... 𝐿 )  ∪  ( 𝑀 ... 𝑁 ) )  ↔  ( 𝑗  ∈  ℤ  ∧  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) ) | 
						
							| 70 |  | elfz1 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝐾 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 71 | 1 4 70 | syl2anc | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝐾 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 72 |  | 3anass | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 73 | 71 72 | bitrdi | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝐾 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 74 | 57 69 73 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( ( 𝐾 ... 𝐿 )  ∪  ( 𝑀 ... 𝑁 ) )  ↔  𝑗  ∈  ( 𝐾 ... 𝑁 ) ) ) | 
						
							| 75 | 74 | eqrdv | ⊢ ( 𝜑  →  ( ( 𝐾 ... 𝐿 )  ∪  ( 𝑀 ... 𝑁 ) )  =  ( 𝐾 ... 𝑁 ) ) |