Step |
Hyp |
Ref |
Expression |
1 |
|
fzunt1d.k |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
2 |
|
fzunt1d.l |
⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
3 |
|
fzunt1d.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
fzunt1d.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
5 |
|
fzunt1d.km |
⊢ ( 𝜑 → 𝐾 ≤ 𝑀 ) |
6 |
|
fzunt1d.ml |
⊢ ( 𝜑 → 𝑀 ≤ 𝐿 ) |
7 |
|
fzunt1d.ln |
⊢ ( 𝜑 → 𝐿 ≤ 𝑁 ) |
8 |
|
zre |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℝ ) |
9 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑗 ∈ ℝ ) |
10 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝐿 ∈ ℤ ) |
11 |
10
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝐿 ∈ ℝ ) |
12 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑁 ∈ ℤ ) |
13 |
12
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑁 ∈ ℝ ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑗 ≤ 𝐿 ) |
15 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝐿 ≤ 𝑁 ) |
16 |
9 11 13 14 15
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑗 ≤ 𝑁 ) |
17 |
16
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ≤ 𝐿 → 𝑗 ≤ 𝑁 ) ) |
18 |
17
|
anim2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
19 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝐾 ∈ ℤ ) |
20 |
19
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝐾 ∈ ℝ ) |
21 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑀 ∈ ℤ ) |
22 |
21
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑀 ∈ ℝ ) |
23 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
24 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝐾 ≤ 𝑀 ) |
25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑀 ≤ 𝑗 ) |
26 |
20 22 23 24 25
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝐾 ≤ 𝑗 ) |
27 |
26
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( 𝑀 ≤ 𝑗 → 𝐾 ≤ 𝑗 ) ) |
28 |
27
|
anim1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
29 |
18 28
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
30 |
|
orc |
⊢ ( 𝐾 ≤ 𝑗 → ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ) |
31 |
|
orc |
⊢ ( 𝐾 ≤ 𝑗 → ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) |
32 |
30 31
|
jca |
⊢ ( 𝐾 ≤ 𝑗 → ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ) |
33 |
32
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ) |
34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → 𝑗 ∈ ℝ ) |
35 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → 𝐿 ∈ ℤ ) |
36 |
35
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → 𝐿 ∈ ℝ ) |
37 |
14
|
orcd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ) |
38 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝐿 ≤ 𝑗 ) → 𝑀 ∈ ℤ ) |
39 |
38
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝐿 ≤ 𝑗 ) → 𝑀 ∈ ℝ ) |
40 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝐿 ≤ 𝑗 ) → 𝐿 ∈ ℤ ) |
41 |
40
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝐿 ≤ 𝑗 ) → 𝐿 ∈ ℝ ) |
42 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝐿 ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
43 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝐿 ≤ 𝑗 ) → 𝑀 ≤ 𝐿 ) |
44 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝐿 ≤ 𝑗 ) → 𝐿 ≤ 𝑗 ) |
45 |
39 41 42 43 44
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝐿 ≤ 𝑗 ) → 𝑀 ≤ 𝑗 ) |
46 |
45
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝐿 ≤ 𝑗 ) → ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ) |
47 |
34 36 37 46
|
lecasei |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ) |
49 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → 𝑗 ≤ 𝑁 ) |
50 |
49
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝑗 ≤ 𝐿 ∨ 𝑗 ≤ 𝑁 ) ) |
51 |
48 50
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝑗 ≤ 𝐿 ∨ 𝑗 ≤ 𝑁 ) ) ) |
52 |
|
orddi |
⊢ ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ∧ ( ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝑗 ≤ 𝐿 ∨ 𝑗 ≤ 𝑁 ) ) ) ) |
53 |
33 51 52
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
54 |
53
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
55 |
29 54
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
56 |
8 55
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
57 |
56
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
58 |
|
elfz1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ) |
59 |
1 2 58
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ) |
60 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ) |
61 |
59 60
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ) ) |
62 |
|
elfz1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
63 |
3 4 62
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
64 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
65 |
63 64
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
66 |
61 65
|
orbi12d |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ∨ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ∨ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
67 |
|
elun |
⊢ ( 𝑗 ∈ ( ( 𝐾 ... 𝐿 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ∨ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ) |
68 |
|
andi |
⊢ ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ∨ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
69 |
66 67 68
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ( 𝐾 ... 𝐿 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
70 |
|
elfz1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
71 |
1 4 70
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
72 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
73 |
71 72
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
74 |
57 69 73
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ( 𝐾 ... 𝐿 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ 𝑗 ∈ ( 𝐾 ... 𝑁 ) ) ) |
75 |
74
|
eqrdv |
⊢ ( 𝜑 → ( ( 𝐾 ... 𝐿 ) ∪ ( 𝑀 ... 𝑁 ) ) = ( 𝐾 ... 𝑁 ) ) |