| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzuntgd.k | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 2 |  | fzuntgd.l | ⊢ ( 𝜑  →  𝐿  ∈  ℤ ) | 
						
							| 3 |  | fzuntgd.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | fzuntgd.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 5 |  | fzuntgd.km | ⊢ ( 𝜑  →  𝐾  ≤  𝑀 ) | 
						
							| 6 |  | fzuntgd.ml | ⊢ ( 𝜑  →  𝑀  ≤  ( 𝐿  +  1 ) ) | 
						
							| 7 |  | fzuntgd.ln | ⊢ ( 𝜑  →  𝐿  ≤  𝑁 ) | 
						
							| 8 |  | zre | ⊢ ( 𝑗  ∈  ℤ  →  𝑗  ∈  ℝ ) | 
						
							| 9 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝑗  ∈  ℝ ) | 
						
							| 10 | 2 | zred | ⊢ ( 𝜑  →  𝐿  ∈  ℝ ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝐿  ∈  ℝ ) | 
						
							| 12 | 4 | zred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝑁  ∈  ℝ ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝑗  ≤  𝐿 ) | 
						
							| 15 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝐿  ≤  𝑁 ) | 
						
							| 16 | 9 11 13 14 15 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑗  ≤  𝐿 )  →  𝑗  ≤  𝑁 ) | 
						
							| 17 | 16 | ex | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( 𝑗  ≤  𝐿  →  𝑗  ≤  𝑁 ) ) | 
						
							| 18 | 17 | anim2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  →  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 19 | 1 | zred | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝐾  ∈  ℝ ) | 
						
							| 21 | 3 | zred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝑀  ∈  ℝ ) | 
						
							| 23 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝑗  ∈  ℝ ) | 
						
							| 24 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝐾  ≤  𝑀 ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝑀  ≤  𝑗 ) | 
						
							| 26 | 20 22 23 24 25 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℝ )  ∧  𝑀  ≤  𝑗 )  →  𝐾  ≤  𝑗 ) | 
						
							| 27 | 26 | ex | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( 𝑀  ≤  𝑗  →  𝐾  ≤  𝑗 ) ) | 
						
							| 28 | 27 | anim1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  →  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 29 | 18 28 | jaod | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℝ )  →  ( ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 30 | 8 29 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  ( ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 31 |  | orc | ⊢ ( 𝐾  ≤  𝑗  →  ( 𝐾  ≤  𝑗  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 32 |  | orc | ⊢ ( 𝐾  ≤  𝑗  →  ( 𝐾  ≤  𝑗  ∨  𝑗  ≤  𝑁 ) ) | 
						
							| 33 | 31 32 | jca | ⊢ ( 𝐾  ≤  𝑗  →  ( ( 𝐾  ≤  𝑗  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝐾  ≤  𝑗  ∨  𝑗  ≤  𝑁 ) ) ) | 
						
							| 34 | 33 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( ( 𝐾  ≤  𝑗  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝐾  ≤  𝑗  ∨  𝑗  ≤  𝑁 ) ) ) | 
						
							| 35 |  | animorrl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  𝑗  ≤  𝐿 )  →  ( 𝑗  ≤  𝐿  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 36 | 21 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐿  +  1 )  ≤  𝑗 )  →  𝑀  ∈  ℝ ) | 
						
							| 37 |  | peano2re | ⊢ ( 𝐿  ∈  ℝ  →  ( 𝐿  +  1 )  ∈  ℝ ) | 
						
							| 38 | 10 37 | syl | ⊢ ( 𝜑  →  ( 𝐿  +  1 )  ∈  ℝ ) | 
						
							| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐿  +  1 )  ≤  𝑗 )  →  ( 𝐿  +  1 )  ∈  ℝ ) | 
						
							| 40 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐿  +  1 )  ≤  𝑗 )  →  𝑗  ∈  ℤ ) | 
						
							| 41 | 40 | zred | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐿  +  1 )  ≤  𝑗 )  →  𝑗  ∈  ℝ ) | 
						
							| 42 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐿  +  1 )  ≤  𝑗 )  →  𝑀  ≤  ( 𝐿  +  1 ) ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐿  +  1 )  ≤  𝑗 )  →  ( 𝐿  +  1 )  ≤  𝑗 ) | 
						
							| 44 | 36 39 41 42 43 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐿  +  1 )  ≤  𝑗 )  →  𝑀  ≤  𝑗 ) | 
						
							| 45 | 44 | olcd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐿  +  1 )  ≤  𝑗 )  →  ( 𝑗  ≤  𝐿  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 46 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  𝑗  ∈  ℤ ) | 
						
							| 47 | 46 | zred | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  𝑗  ∈  ℝ ) | 
						
							| 48 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  𝐿  ∈  ℤ ) | 
						
							| 49 | 48 | zred | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  𝐿  ∈  ℝ ) | 
						
							| 50 |  | lelttric | ⊢ ( ( 𝑗  ∈  ℝ  ∧  𝐿  ∈  ℝ )  →  ( 𝑗  ≤  𝐿  ∨  𝐿  <  𝑗 ) ) | 
						
							| 51 | 47 49 50 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  ( 𝑗  ≤  𝐿  ∨  𝐿  <  𝑗 ) ) | 
						
							| 52 |  | zltp1le | ⊢ ( ( 𝐿  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 𝐿  <  𝑗  ↔  ( 𝐿  +  1 )  ≤  𝑗 ) ) | 
						
							| 53 | 2 52 | sylan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  ( 𝐿  <  𝑗  ↔  ( 𝐿  +  1 )  ≤  𝑗 ) ) | 
						
							| 54 | 53 | orbi2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  ( ( 𝑗  ≤  𝐿  ∨  𝐿  <  𝑗 )  ↔  ( 𝑗  ≤  𝐿  ∨  ( 𝐿  +  1 )  ≤  𝑗 ) ) ) | 
						
							| 55 | 51 54 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  ( 𝑗  ≤  𝐿  ∨  ( 𝐿  +  1 )  ≤  𝑗 ) ) | 
						
							| 56 | 35 45 55 | mpjaodan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  ( 𝑗  ≤  𝐿  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( 𝑗  ≤  𝐿  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 58 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  𝑗  ≤  𝑁 ) | 
						
							| 59 | 58 | olcd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( 𝑗  ≤  𝐿  ∨  𝑗  ≤  𝑁 ) ) | 
						
							| 60 | 57 59 | jca | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( ( 𝑗  ≤  𝐿  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝑗  ≤  𝐿  ∨  𝑗  ≤  𝑁 ) ) ) | 
						
							| 61 |  | orddi | ⊢ ( ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  ↔  ( ( ( 𝐾  ≤  𝑗  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝐾  ≤  𝑗  ∨  𝑗  ≤  𝑁 ) )  ∧  ( ( 𝑗  ≤  𝐿  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝑗  ≤  𝐿  ∨  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 62 | 34 60 61 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 63 | 62 | ex | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  →  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 64 | 30 63 | impbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  ( ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  ↔  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 65 | 64 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑗  ∈  ℤ  ∧  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 66 |  | elfz1 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝐾 ... 𝐿 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 ) ) ) | 
						
							| 67 | 1 2 66 | syl2anc | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝐾 ... 𝐿 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 ) ) ) | 
						
							| 68 |  | 3anass | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 ) ) ) | 
						
							| 69 | 67 68 | bitrdi | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝐾 ... 𝐿 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 ) ) ) ) | 
						
							| 70 |  | elfz1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 71 | 3 4 70 | syl2anc | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 72 |  | 3anass | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 73 | 71 72 | bitrdi | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 74 | 69 73 | orbi12d | ⊢ ( 𝜑  →  ( ( 𝑗  ∈  ( 𝐾 ... 𝐿 )  ∨  𝑗  ∈  ( 𝑀 ... 𝑁 ) )  ↔  ( ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 ) )  ∨  ( 𝑗  ∈  ℤ  ∧  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) ) | 
						
							| 75 |  | elun | ⊢ ( 𝑗  ∈  ( ( 𝐾 ... 𝐿 )  ∪  ( 𝑀 ... 𝑁 ) )  ↔  ( 𝑗  ∈  ( 𝐾 ... 𝐿 )  ∨  𝑗  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 76 |  | andi | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) )  ↔  ( ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 ) )  ∨  ( 𝑗  ∈  ℤ  ∧  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 77 | 74 75 76 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( ( 𝐾 ... 𝐿 )  ∪  ( 𝑀 ... 𝑁 ) )  ↔  ( 𝑗  ∈  ℤ  ∧  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝐿 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) ) | 
						
							| 78 |  | elfz1 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝐾 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 79 | 1 4 78 | syl2anc | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝐾 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 80 |  | 3anass | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 81 | 79 80 | bitrdi | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝐾 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 82 | 65 77 81 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( ( 𝐾 ... 𝐿 )  ∪  ( 𝑀 ... 𝑁 ) )  ↔  𝑗  ∈  ( 𝐾 ... 𝑁 ) ) ) | 
						
							| 83 | 82 | eqrdv | ⊢ ( 𝜑  →  ( ( 𝐾 ... 𝐿 )  ∪  ( 𝑀 ... 𝑁 ) )  =  ( 𝐾 ... 𝑁 ) ) |