| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzuntgd.k |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 2 |
|
fzuntgd.l |
⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
| 3 |
|
fzuntgd.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
fzuntgd.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 5 |
|
fzuntgd.km |
⊢ ( 𝜑 → 𝐾 ≤ 𝑀 ) |
| 6 |
|
fzuntgd.ml |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐿 + 1 ) ) |
| 7 |
|
fzuntgd.ln |
⊢ ( 𝜑 → 𝐿 ≤ 𝑁 ) |
| 8 |
|
zre |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℝ ) |
| 9 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑗 ∈ ℝ ) |
| 10 |
2
|
zred |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 11 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝐿 ∈ ℝ ) |
| 12 |
4
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑁 ∈ ℝ ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑗 ≤ 𝐿 ) |
| 15 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝐿 ≤ 𝑁 ) |
| 16 |
9 11 13 14 15
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑗 ≤ 𝑁 ) |
| 17 |
16
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ≤ 𝐿 → 𝑗 ≤ 𝑁 ) ) |
| 18 |
17
|
anim2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 19 |
1
|
zred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝐾 ∈ ℝ ) |
| 21 |
3
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 22 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑀 ∈ ℝ ) |
| 23 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
| 24 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝐾 ≤ 𝑀 ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑀 ≤ 𝑗 ) |
| 26 |
20 22 23 24 25
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝐾 ≤ 𝑗 ) |
| 27 |
26
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( 𝑀 ≤ 𝑗 → 𝐾 ≤ 𝑗 ) ) |
| 28 |
27
|
anim1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 29 |
18 28
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 30 |
8 29
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 31 |
|
orc |
⊢ ( 𝐾 ≤ 𝑗 → ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ) |
| 32 |
|
orc |
⊢ ( 𝐾 ≤ 𝑗 → ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) |
| 33 |
31 32
|
jca |
⊢ ( 𝐾 ≤ 𝑗 → ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ) |
| 34 |
33
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ) |
| 35 |
|
animorrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ 𝑗 ≤ 𝐿 ) → ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ) |
| 36 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → 𝑀 ∈ ℝ ) |
| 37 |
|
peano2re |
⊢ ( 𝐿 ∈ ℝ → ( 𝐿 + 1 ) ∈ ℝ ) |
| 38 |
10 37
|
syl |
⊢ ( 𝜑 → ( 𝐿 + 1 ) ∈ ℝ ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → ( 𝐿 + 1 ) ∈ ℝ ) |
| 40 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → 𝑗 ∈ ℤ ) |
| 41 |
40
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
| 42 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → 𝑀 ≤ ( 𝐿 + 1 ) ) |
| 43 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → ( 𝐿 + 1 ) ≤ 𝑗 ) |
| 44 |
36 39 41 42 43
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → 𝑀 ≤ 𝑗 ) |
| 45 |
44
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ) |
| 46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℤ ) |
| 47 |
46
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℝ ) |
| 48 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝐿 ∈ ℤ ) |
| 49 |
48
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝐿 ∈ ℝ ) |
| 50 |
|
lelttric |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝑗 ≤ 𝐿 ∨ 𝐿 < 𝑗 ) ) |
| 51 |
47 49 50
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ≤ 𝐿 ∨ 𝐿 < 𝑗 ) ) |
| 52 |
|
zltp1le |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝐿 < 𝑗 ↔ ( 𝐿 + 1 ) ≤ 𝑗 ) ) |
| 53 |
2 52
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝐿 < 𝑗 ↔ ( 𝐿 + 1 ) ≤ 𝑗 ) ) |
| 54 |
53
|
orbi2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑗 ≤ 𝐿 ∨ 𝐿 < 𝑗 ) ↔ ( 𝑗 ≤ 𝐿 ∨ ( 𝐿 + 1 ) ≤ 𝑗 ) ) ) |
| 55 |
51 54
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ≤ 𝐿 ∨ ( 𝐿 + 1 ) ≤ 𝑗 ) ) |
| 56 |
35 45 55
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ) |
| 58 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → 𝑗 ≤ 𝑁 ) |
| 59 |
58
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝑗 ≤ 𝐿 ∨ 𝑗 ≤ 𝑁 ) ) |
| 60 |
57 59
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝑗 ≤ 𝐿 ∨ 𝑗 ≤ 𝑁 ) ) ) |
| 61 |
|
orddi |
⊢ ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ∧ ( ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝑗 ≤ 𝐿 ∨ 𝑗 ≤ 𝑁 ) ) ) ) |
| 62 |
34 60 61
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 63 |
62
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 64 |
30 63
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 65 |
64
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 66 |
|
elfz1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ) |
| 67 |
1 2 66
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ) |
| 68 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ) |
| 69 |
67 68
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ) ) |
| 70 |
|
elfz1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 71 |
3 4 70
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 72 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 73 |
71 72
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 74 |
69 73
|
orbi12d |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ∨ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ∨ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
| 75 |
|
elun |
⊢ ( 𝑗 ∈ ( ( 𝐾 ... 𝐿 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ∨ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 76 |
|
andi |
⊢ ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ∨ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 77 |
74 75 76
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ( 𝐾 ... 𝐿 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
| 78 |
|
elfz1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 79 |
1 4 78
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 80 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 81 |
79 80
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 82 |
65 77 81
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ( 𝐾 ... 𝐿 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ 𝑗 ∈ ( 𝐾 ... 𝑁 ) ) ) |
| 83 |
82
|
eqrdv |
⊢ ( 𝜑 → ( ( 𝐾 ... 𝐿 ) ∪ ( 𝑀 ... 𝑁 ) ) = ( 𝐾 ... 𝑁 ) ) |