Step |
Hyp |
Ref |
Expression |
1 |
|
fzuntgd.k |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
2 |
|
fzuntgd.l |
⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
3 |
|
fzuntgd.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
fzuntgd.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
5 |
|
fzuntgd.km |
⊢ ( 𝜑 → 𝐾 ≤ 𝑀 ) |
6 |
|
fzuntgd.ml |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐿 + 1 ) ) |
7 |
|
fzuntgd.ln |
⊢ ( 𝜑 → 𝐿 ≤ 𝑁 ) |
8 |
|
zre |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℝ ) |
9 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑗 ∈ ℝ ) |
10 |
2
|
zred |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝐿 ∈ ℝ ) |
12 |
4
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑁 ∈ ℝ ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑗 ≤ 𝐿 ) |
15 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝐿 ≤ 𝑁 ) |
16 |
9 11 13 14 15
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑗 ≤ 𝐿 ) → 𝑗 ≤ 𝑁 ) |
17 |
16
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ≤ 𝐿 → 𝑗 ≤ 𝑁 ) ) |
18 |
17
|
anim2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
19 |
1
|
zred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝐾 ∈ ℝ ) |
21 |
3
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑀 ∈ ℝ ) |
23 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
24 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝐾 ≤ 𝑀 ) |
25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑀 ≤ 𝑗 ) |
26 |
20 22 23 24 25
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) ∧ 𝑀 ≤ 𝑗 ) → 𝐾 ≤ 𝑗 ) |
27 |
26
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( 𝑀 ≤ 𝑗 → 𝐾 ≤ 𝑗 ) ) |
28 |
27
|
anim1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
29 |
18 28
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
30 |
8 29
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
31 |
|
orc |
⊢ ( 𝐾 ≤ 𝑗 → ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ) |
32 |
|
orc |
⊢ ( 𝐾 ≤ 𝑗 → ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) |
33 |
31 32
|
jca |
⊢ ( 𝐾 ≤ 𝑗 → ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ) |
34 |
33
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ) |
35 |
|
animorrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ 𝑗 ≤ 𝐿 ) → ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ) |
36 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → 𝑀 ∈ ℝ ) |
37 |
|
peano2re |
⊢ ( 𝐿 ∈ ℝ → ( 𝐿 + 1 ) ∈ ℝ ) |
38 |
10 37
|
syl |
⊢ ( 𝜑 → ( 𝐿 + 1 ) ∈ ℝ ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → ( 𝐿 + 1 ) ∈ ℝ ) |
40 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → 𝑗 ∈ ℤ ) |
41 |
40
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
42 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → 𝑀 ≤ ( 𝐿 + 1 ) ) |
43 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → ( 𝐿 + 1 ) ≤ 𝑗 ) |
44 |
36 39 41 42 43
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → 𝑀 ≤ 𝑗 ) |
45 |
44
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐿 + 1 ) ≤ 𝑗 ) → ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ) |
46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℤ ) |
47 |
46
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℝ ) |
48 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝐿 ∈ ℤ ) |
49 |
48
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝐿 ∈ ℝ ) |
50 |
|
lelttric |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝑗 ≤ 𝐿 ∨ 𝐿 < 𝑗 ) ) |
51 |
47 49 50
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ≤ 𝐿 ∨ 𝐿 < 𝑗 ) ) |
52 |
|
zltp1le |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝐿 < 𝑗 ↔ ( 𝐿 + 1 ) ≤ 𝑗 ) ) |
53 |
2 52
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝐿 < 𝑗 ↔ ( 𝐿 + 1 ) ≤ 𝑗 ) ) |
54 |
53
|
orbi2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑗 ≤ 𝐿 ∨ 𝐿 < 𝑗 ) ↔ ( 𝑗 ≤ 𝐿 ∨ ( 𝐿 + 1 ) ≤ 𝑗 ) ) ) |
55 |
51 54
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ≤ 𝐿 ∨ ( 𝐿 + 1 ) ≤ 𝑗 ) ) |
56 |
35 45 55
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ) |
57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ) |
58 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → 𝑗 ≤ 𝑁 ) |
59 |
58
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝑗 ≤ 𝐿 ∨ 𝑗 ≤ 𝑁 ) ) |
60 |
57 59
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝑗 ≤ 𝐿 ∨ 𝑗 ≤ 𝑁 ) ) ) |
61 |
|
orddi |
⊢ ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ∧ ( ( 𝑗 ≤ 𝐿 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝑗 ≤ 𝐿 ∨ 𝑗 ≤ 𝑁 ) ) ) ) |
62 |
34 60 61
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
63 |
62
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
64 |
30 63
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
65 |
64
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
66 |
|
elfz1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ) |
67 |
1 2 66
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ) |
68 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ) |
69 |
67 68
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ) ) |
70 |
|
elfz1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
71 |
3 4 70
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
72 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
73 |
71 72
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
74 |
69 73
|
orbi12d |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ∨ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ∨ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
75 |
|
elun |
⊢ ( 𝑗 ∈ ( ( 𝐾 ... 𝐿 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ( 𝐾 ... 𝐿 ) ∨ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ) |
76 |
|
andi |
⊢ ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ) ∨ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
77 |
74 75 76
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ( 𝐾 ... 𝐿 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝐿 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
78 |
|
elfz1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
79 |
1 4 78
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
80 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
81 |
79 80
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
82 |
65 77 81
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ( 𝐾 ... 𝐿 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ 𝑗 ∈ ( 𝐾 ... 𝑁 ) ) ) |
83 |
82
|
eqrdv |
⊢ ( 𝜑 → ( ( 𝐾 ... 𝐿 ) ∪ ( 𝑀 ... 𝑁 ) ) = ( 𝐾 ... 𝑁 ) ) |