Metamath Proof Explorer


Theorem fzuntgd

Description: Union of two adjacent or overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024)

Ref Expression
Hypotheses fzuntgd.k φ K
fzuntgd.l φ L
fzuntgd.m φ M
fzuntgd.n φ N
fzuntgd.km φ K M
fzuntgd.ml φ M L + 1
fzuntgd.ln φ L N
Assertion fzuntgd φ K L M N = K N

Proof

Step Hyp Ref Expression
1 fzuntgd.k φ K
2 fzuntgd.l φ L
3 fzuntgd.m φ M
4 fzuntgd.n φ N
5 fzuntgd.km φ K M
6 fzuntgd.ml φ M L + 1
7 fzuntgd.ln φ L N
8 zre j j
9 simplr φ j j L j
10 2 zred φ L
11 10 ad2antrr φ j j L L
12 4 zred φ N
13 12 ad2antrr φ j j L N
14 simpr φ j j L j L
15 7 ad2antrr φ j j L L N
16 9 11 13 14 15 letrd φ j j L j N
17 16 ex φ j j L j N
18 17 anim2d φ j K j j L K j j N
19 1 zred φ K
20 19 ad2antrr φ j M j K
21 3 zred φ M
22 21 ad2antrr φ j M j M
23 simplr φ j M j j
24 5 ad2antrr φ j M j K M
25 simpr φ j M j M j
26 20 22 23 24 25 letrd φ j M j K j
27 26 ex φ j M j K j
28 27 anim1d φ j M j j N K j j N
29 18 28 jaod φ j K j j L M j j N K j j N
30 8 29 sylan2 φ j K j j L M j j N K j j N
31 orc K j K j M j
32 orc K j K j j N
33 31 32 jca K j K j M j K j j N
34 33 ad2antrl φ j K j j N K j M j K j j N
35 animorrl φ j j L j L M j
36 21 ad2antrr φ j L + 1 j M
37 peano2re L L + 1
38 10 37 syl φ L + 1
39 38 ad2antrr φ j L + 1 j L + 1
40 simplr φ j L + 1 j j
41 40 zred φ j L + 1 j j
42 6 ad2antrr φ j L + 1 j M L + 1
43 simpr φ j L + 1 j L + 1 j
44 36 39 41 42 43 letrd φ j L + 1 j M j
45 44 olcd φ j L + 1 j j L M j
46 simpr φ j j
47 46 zred φ j j
48 2 adantr φ j L
49 48 zred φ j L
50 lelttric j L j L L < j
51 47 49 50 syl2anc φ j j L L < j
52 zltp1le L j L < j L + 1 j
53 2 52 sylan φ j L < j L + 1 j
54 53 orbi2d φ j j L L < j j L L + 1 j
55 51 54 mpbid φ j j L L + 1 j
56 35 45 55 mpjaodan φ j j L M j
57 56 adantr φ j K j j N j L M j
58 simprr φ j K j j N j N
59 58 olcd φ j K j j N j L j N
60 57 59 jca φ j K j j N j L M j j L j N
61 orddi K j j L M j j N K j M j K j j N j L M j j L j N
62 34 60 61 sylanbrc φ j K j j N K j j L M j j N
63 62 ex φ j K j j N K j j L M j j N
64 30 63 impbid φ j K j j L M j j N K j j N
65 64 pm5.32da φ j K j j L M j j N j K j j N
66 elfz1 K L j K L j K j j L
67 1 2 66 syl2anc φ j K L j K j j L
68 3anass j K j j L j K j j L
69 67 68 bitrdi φ j K L j K j j L
70 elfz1 M N j M N j M j j N
71 3 4 70 syl2anc φ j M N j M j j N
72 3anass j M j j N j M j j N
73 71 72 bitrdi φ j M N j M j j N
74 69 73 orbi12d φ j K L j M N j K j j L j M j j N
75 elun j K L M N j K L j M N
76 andi j K j j L M j j N j K j j L j M j j N
77 74 75 76 3bitr4g φ j K L M N j K j j L M j j N
78 elfz1 K N j K N j K j j N
79 1 4 78 syl2anc φ j K N j K j j N
80 3anass j K j j N j K j j N
81 79 80 bitrdi φ j K N j K j j N
82 65 77 81 3bitr4d φ j K L M N j K N
83 82 eqrdv φ K L M N = K N