Step |
Hyp |
Ref |
Expression |
1 |
|
fzuntgd.k |
|
2 |
|
fzuntgd.l |
|
3 |
|
fzuntgd.m |
|
4 |
|
fzuntgd.n |
|
5 |
|
fzuntgd.km |
|
6 |
|
fzuntgd.ml |
|
7 |
|
fzuntgd.ln |
|
8 |
|
zre |
|
9 |
|
simplr |
|
10 |
2
|
zred |
|
11 |
10
|
ad2antrr |
|
12 |
4
|
zred |
|
13 |
12
|
ad2antrr |
|
14 |
|
simpr |
|
15 |
7
|
ad2antrr |
|
16 |
9 11 13 14 15
|
letrd |
|
17 |
16
|
ex |
|
18 |
17
|
anim2d |
|
19 |
1
|
zred |
|
20 |
19
|
ad2antrr |
|
21 |
3
|
zred |
|
22 |
21
|
ad2antrr |
|
23 |
|
simplr |
|
24 |
5
|
ad2antrr |
|
25 |
|
simpr |
|
26 |
20 22 23 24 25
|
letrd |
|
27 |
26
|
ex |
|
28 |
27
|
anim1d |
|
29 |
18 28
|
jaod |
|
30 |
8 29
|
sylan2 |
|
31 |
|
orc |
|
32 |
|
orc |
|
33 |
31 32
|
jca |
|
34 |
33
|
ad2antrl |
|
35 |
|
animorrl |
|
36 |
21
|
ad2antrr |
|
37 |
|
peano2re |
|
38 |
10 37
|
syl |
|
39 |
38
|
ad2antrr |
|
40 |
|
simplr |
|
41 |
40
|
zred |
|
42 |
6
|
ad2antrr |
|
43 |
|
simpr |
|
44 |
36 39 41 42 43
|
letrd |
|
45 |
44
|
olcd |
|
46 |
|
simpr |
|
47 |
46
|
zred |
|
48 |
2
|
adantr |
|
49 |
48
|
zred |
|
50 |
|
lelttric |
|
51 |
47 49 50
|
syl2anc |
|
52 |
|
zltp1le |
|
53 |
2 52
|
sylan |
|
54 |
53
|
orbi2d |
|
55 |
51 54
|
mpbid |
|
56 |
35 45 55
|
mpjaodan |
|
57 |
56
|
adantr |
|
58 |
|
simprr |
|
59 |
58
|
olcd |
|
60 |
57 59
|
jca |
|
61 |
|
orddi |
|
62 |
34 60 61
|
sylanbrc |
|
63 |
62
|
ex |
|
64 |
30 63
|
impbid |
|
65 |
64
|
pm5.32da |
|
66 |
|
elfz1 |
|
67 |
1 2 66
|
syl2anc |
|
68 |
|
3anass |
|
69 |
67 68
|
bitrdi |
|
70 |
|
elfz1 |
|
71 |
3 4 70
|
syl2anc |
|
72 |
|
3anass |
|
73 |
71 72
|
bitrdi |
|
74 |
69 73
|
orbi12d |
|
75 |
|
elun |
|
76 |
|
andi |
|
77 |
74 75 76
|
3bitr4g |
|
78 |
|
elfz1 |
|
79 |
1 4 78
|
syl2anc |
|
80 |
|
3anass |
|
81 |
79 80
|
bitrdi |
|
82 |
65 77 81
|
3bitr4d |
|
83 |
82
|
eqrdv |
|