Step |
Hyp |
Ref |
Expression |
1 |
|
fzunt1d.k |
|
2 |
|
fzunt1d.l |
|
3 |
|
fzunt1d.m |
|
4 |
|
fzunt1d.n |
|
5 |
|
fzunt1d.km |
|
6 |
|
fzunt1d.ml |
|
7 |
|
fzunt1d.ln |
|
8 |
|
zre |
|
9 |
|
simplr |
|
10 |
2
|
ad2antrr |
|
11 |
10
|
zred |
|
12 |
4
|
ad2antrr |
|
13 |
12
|
zred |
|
14 |
|
simpr |
|
15 |
7
|
ad2antrr |
|
16 |
9 11 13 14 15
|
letrd |
|
17 |
16
|
ex |
|
18 |
17
|
anim2d |
|
19 |
1
|
ad2antrr |
|
20 |
19
|
zred |
|
21 |
3
|
ad2antrr |
|
22 |
21
|
zred |
|
23 |
|
simplr |
|
24 |
5
|
ad2antrr |
|
25 |
|
simpr |
|
26 |
20 22 23 24 25
|
letrd |
|
27 |
26
|
ex |
|
28 |
27
|
anim1d |
|
29 |
18 28
|
jaod |
|
30 |
|
orc |
|
31 |
|
orc |
|
32 |
30 31
|
jca |
|
33 |
32
|
ad2antrl |
|
34 |
|
simpr |
|
35 |
2
|
adantr |
|
36 |
35
|
zred |
|
37 |
14
|
orcd |
|
38 |
3
|
ad2antrr |
|
39 |
38
|
zred |
|
40 |
2
|
ad2antrr |
|
41 |
40
|
zred |
|
42 |
|
simplr |
|
43 |
6
|
ad2antrr |
|
44 |
|
simpr |
|
45 |
39 41 42 43 44
|
letrd |
|
46 |
45
|
olcd |
|
47 |
34 36 37 46
|
lecasei |
|
48 |
47
|
adantr |
|
49 |
|
simprr |
|
50 |
49
|
olcd |
|
51 |
48 50
|
jca |
|
52 |
|
orddi |
|
53 |
33 51 52
|
sylanbrc |
|
54 |
53
|
ex |
|
55 |
29 54
|
impbid |
|
56 |
8 55
|
sylan2 |
|
57 |
56
|
pm5.32da |
|
58 |
|
elfz1 |
|
59 |
1 2 58
|
syl2anc |
|
60 |
|
3anass |
|
61 |
59 60
|
bitrdi |
|
62 |
|
elfz1 |
|
63 |
3 4 62
|
syl2anc |
|
64 |
|
3anass |
|
65 |
63 64
|
bitrdi |
|
66 |
61 65
|
orbi12d |
|
67 |
|
elun |
|
68 |
|
andi |
|
69 |
66 67 68
|
3bitr4g |
|
70 |
|
elfz1 |
|
71 |
1 4 70
|
syl2anc |
|
72 |
|
3anass |
|
73 |
71 72
|
bitrdi |
|
74 |
57 69 73
|
3bitr4d |
|
75 |
74
|
eqrdv |
|