Metamath Proof Explorer


Theorem fzunt1d

Description: Union of two overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024)

Ref Expression
Hypotheses fzunt1d.k φ K
fzunt1d.l φ L
fzunt1d.m φ M
fzunt1d.n φ N
fzunt1d.km φ K M
fzunt1d.ml φ M L
fzunt1d.ln φ L N
Assertion fzunt1d φ K L M N = K N

Proof

Step Hyp Ref Expression
1 fzunt1d.k φ K
2 fzunt1d.l φ L
3 fzunt1d.m φ M
4 fzunt1d.n φ N
5 fzunt1d.km φ K M
6 fzunt1d.ml φ M L
7 fzunt1d.ln φ L N
8 zre j j
9 simplr φ j j L j
10 2 ad2antrr φ j j L L
11 10 zred φ j j L L
12 4 ad2antrr φ j j L N
13 12 zred φ j j L N
14 simpr φ j j L j L
15 7 ad2antrr φ j j L L N
16 9 11 13 14 15 letrd φ j j L j N
17 16 ex φ j j L j N
18 17 anim2d φ j K j j L K j j N
19 1 ad2antrr φ j M j K
20 19 zred φ j M j K
21 3 ad2antrr φ j M j M
22 21 zred φ j M j M
23 simplr φ j M j j
24 5 ad2antrr φ j M j K M
25 simpr φ j M j M j
26 20 22 23 24 25 letrd φ j M j K j
27 26 ex φ j M j K j
28 27 anim1d φ j M j j N K j j N
29 18 28 jaod φ j K j j L M j j N K j j N
30 orc K j K j M j
31 orc K j K j j N
32 30 31 jca K j K j M j K j j N
33 32 ad2antrl φ j K j j N K j M j K j j N
34 simpr φ j j
35 2 adantr φ j L
36 35 zred φ j L
37 14 orcd φ j j L j L M j
38 3 ad2antrr φ j L j M
39 38 zred φ j L j M
40 2 ad2antrr φ j L j L
41 40 zred φ j L j L
42 simplr φ j L j j
43 6 ad2antrr φ j L j M L
44 simpr φ j L j L j
45 39 41 42 43 44 letrd φ j L j M j
46 45 olcd φ j L j j L M j
47 34 36 37 46 lecasei φ j j L M j
48 47 adantr φ j K j j N j L M j
49 simprr φ j K j j N j N
50 49 olcd φ j K j j N j L j N
51 48 50 jca φ j K j j N j L M j j L j N
52 orddi K j j L M j j N K j M j K j j N j L M j j L j N
53 33 51 52 sylanbrc φ j K j j N K j j L M j j N
54 53 ex φ j K j j N K j j L M j j N
55 29 54 impbid φ j K j j L M j j N K j j N
56 8 55 sylan2 φ j K j j L M j j N K j j N
57 56 pm5.32da φ j K j j L M j j N j K j j N
58 elfz1 K L j K L j K j j L
59 1 2 58 syl2anc φ j K L j K j j L
60 3anass j K j j L j K j j L
61 59 60 bitrdi φ j K L j K j j L
62 elfz1 M N j M N j M j j N
63 3 4 62 syl2anc φ j M N j M j j N
64 3anass j M j j N j M j j N
65 63 64 bitrdi φ j M N j M j j N
66 61 65 orbi12d φ j K L j M N j K j j L j M j j N
67 elun j K L M N j K L j M N
68 andi j K j j L M j j N j K j j L j M j j N
69 66 67 68 3bitr4g φ j K L M N j K j j L M j j N
70 elfz1 K N j K N j K j j N
71 1 4 70 syl2anc φ j K N j K j j N
72 3anass j K j j N j K j j N
73 71 72 bitrdi φ j K N j K j j N
74 57 69 73 3bitr4d φ j K L M N j K N
75 74 eqrdv φ K L M N = K N