Metamath Proof Explorer


Theorem galcan

Description: The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypothesis galcan.1 X=BaseG
Assertion galcan ˙GGrpActYAXBYCYA˙B=A˙CB=C

Proof

Step Hyp Ref Expression
1 galcan.1 X=BaseG
2 oveq2 A˙B=A˙CinvgGA˙A˙B=invgGA˙A˙C
3 simpl ˙GGrpActYAXBYCY˙GGrpActY
4 gagrp ˙GGrpActYGGrp
5 3 4 syl ˙GGrpActYAXBYCYGGrp
6 simpr1 ˙GGrpActYAXBYCYAX
7 eqid +G=+G
8 eqid 0G=0G
9 eqid invgG=invgG
10 1 7 8 9 grplinv GGrpAXinvgGA+GA=0G
11 5 6 10 syl2anc ˙GGrpActYAXBYCYinvgGA+GA=0G
12 11 oveq1d ˙GGrpActYAXBYCYinvgGA+GA˙B=0G˙B
13 1 9 grpinvcl GGrpAXinvgGAX
14 5 6 13 syl2anc ˙GGrpActYAXBYCYinvgGAX
15 simpr2 ˙GGrpActYAXBYCYBY
16 1 7 gaass ˙GGrpActYinvgGAXAXBYinvgGA+GA˙B=invgGA˙A˙B
17 3 14 6 15 16 syl13anc ˙GGrpActYAXBYCYinvgGA+GA˙B=invgGA˙A˙B
18 8 gagrpid ˙GGrpActYBY0G˙B=B
19 3 15 18 syl2anc ˙GGrpActYAXBYCY0G˙B=B
20 12 17 19 3eqtr3d ˙GGrpActYAXBYCYinvgGA˙A˙B=B
21 11 oveq1d ˙GGrpActYAXBYCYinvgGA+GA˙C=0G˙C
22 simpr3 ˙GGrpActYAXBYCYCY
23 1 7 gaass ˙GGrpActYinvgGAXAXCYinvgGA+GA˙C=invgGA˙A˙C
24 3 14 6 22 23 syl13anc ˙GGrpActYAXBYCYinvgGA+GA˙C=invgGA˙A˙C
25 8 gagrpid ˙GGrpActYCY0G˙C=C
26 3 22 25 syl2anc ˙GGrpActYAXBYCY0G˙C=C
27 21 24 26 3eqtr3d ˙GGrpActYAXBYCYinvgGA˙A˙C=C
28 20 27 eqeq12d ˙GGrpActYAXBYCYinvgGA˙A˙B=invgGA˙A˙CB=C
29 2 28 imbitrid ˙GGrpActYAXBYCYA˙B=A˙CB=C
30 oveq2 B=CA˙B=A˙C
31 29 30 impbid1 ˙GGrpActYAXBYCYA˙B=A˙CB=C