Metamath Proof Explorer


Theorem gausslemma2dlem1

Description: Lemma 1 for gausslemma2d . (Contributed by AV, 5-Jul-2021)

Ref Expression
Hypotheses gausslemma2d.p φP2
gausslemma2d.h H=P12
gausslemma2d.r R=x1Hifx2<P2x2Px2
Assertion gausslemma2dlem1 φH!=k=1HRk

Proof

Step Hyp Ref Expression
1 gausslemma2d.p φP2
2 gausslemma2d.h H=P12
3 gausslemma2d.r R=x1Hifx2<P2x2Px2
4 1 2 gausslemma2dlem0b φH
5 4 nnnn0d φH0
6 fprodfac H0H!=l=1Hl
7 5 6 syl φH!=l=1Hl
8 id l=Rkl=Rk
9 fzfid φ1HFin
10 fzfi 1HFin
11 ovex x2V
12 ovex Px2V
13 11 12 ifex ifx2<P2x2Px2V
14 13 3 fnmpti RFn1H
15 1 2 3 gausslemma2dlem1a φranR=1H
16 rneqdmfinf1o 1HFinRFn1HranR=1HR:1H1-1 onto1H
17 10 14 15 16 mp3an12i φR:1H1-1 onto1H
18 eqidd φk1HRk=Rk
19 elfzelz l1Hl
20 19 zcnd l1Hl
21 20 adantl φl1Hl
22 8 9 17 18 21 fprodf1o φl=1Hl=k=1HRk
23 7 22 eqtrd φH!=k=1HRk