Metamath Proof Explorer


Theorem gausslemma2dlem5a

Description: Lemma for gausslemma2dlem5 . (Contributed by AV, 8-Jul-2021)

Ref Expression
Hypotheses gausslemma2d.p φP2
gausslemma2d.h H=P12
gausslemma2d.r R=x1Hifx2<P2x2Px2
gausslemma2d.m M=P4
Assertion gausslemma2dlem5a φk=M+1HRkmodP=k=M+1H-1k2modP

Proof

Step Hyp Ref Expression
1 gausslemma2d.p φP2
2 gausslemma2d.h H=P12
3 gausslemma2d.r R=x1Hifx2<P2x2Px2
4 gausslemma2d.m M=P4
5 1 2 3 4 gausslemma2dlem3 φkM+1HRk=Pk2
6 prodeq2 kM+1HRk=Pk2k=M+1HRk=k=M+1HPk2
7 6 oveq1d kM+1HRk=Pk2k=M+1HRkmodP=k=M+1HPk2modP
8 5 7 syl φk=M+1HRkmodP=k=M+1HPk2modP
9 eldifi P2P
10 fzfid PM+1HFin
11 prmz PP
12 11 adantr PkM+1HP
13 elfzelz kM+1Hk
14 2z 2
15 14 a1i kM+1H2
16 13 15 zmulcld kM+1Hk2
17 16 adantl PkM+1Hk2
18 12 17 zsubcld PkM+1HPk2
19 neg1z 1
20 19 a1i kM+1H1
21 20 16 zmulcld kM+1H-1k2
22 21 adantl PkM+1H-1k2
23 prmnn PP
24 16 zcnd kM+1Hk2
25 24 mulm1d kM+1H-1k2=k2
26 25 adantl PkM+1H-1k2=k2
27 26 oveq1d PkM+1H-1k2modP=k2modP
28 16 zred kM+1Hk2
29 23 nnrpd PP+
30 negmod k2P+k2modP=Pk2modP
31 28 29 30 syl2anr PkM+1Hk2modP=Pk2modP
32 27 31 eqtr2d PkM+1HPk2modP=-1k2modP
33 10 18 22 23 32 fprodmodd Pk=M+1HPk2modP=k=M+1H-1k2modP
34 1 9 33 3syl φk=M+1HPk2modP=k=M+1H-1k2modP
35 8 34 eqtrd φk=M+1HRkmodP=k=M+1H-1k2modP