Metamath Proof Explorer


Theorem genpcd

Description: Downward closure of an operation on positive reals. (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
genp.2 y𝑸z𝑸yGz𝑸
genpcd.2 A𝑷gAB𝑷hBx𝑸x<𝑸gGhxAFB
Assertion genpcd A𝑷B𝑷fAFBx<𝑸fxAFB

Proof

Step Hyp Ref Expression
1 genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
2 genp.2 y𝑸z𝑸yGz𝑸
3 genpcd.2 A𝑷gAB𝑷hBx𝑸x<𝑸gGhxAFB
4 ltrelnq <𝑸𝑸×𝑸
5 4 brel x<𝑸fx𝑸f𝑸
6 5 simpld x<𝑸fx𝑸
7 1 2 genpelv A𝑷B𝑷fAFBgAhBf=gGh
8 7 adantr A𝑷B𝑷x𝑸fAFBgAhBf=gGh
9 breq2 f=gGhx<𝑸fx<𝑸gGh
10 9 biimpd f=gGhx<𝑸fx<𝑸gGh
11 10 3 sylan9r A𝑷gAB𝑷hBx𝑸f=gGhx<𝑸fxAFB
12 11 exp31 A𝑷gAB𝑷hBx𝑸f=gGhx<𝑸fxAFB
13 12 an4s A𝑷B𝑷gAhBx𝑸f=gGhx<𝑸fxAFB
14 13 impancom A𝑷B𝑷x𝑸gAhBf=gGhx<𝑸fxAFB
15 14 rexlimdvv A𝑷B𝑷x𝑸gAhBf=gGhx<𝑸fxAFB
16 8 15 sylbid A𝑷B𝑷x𝑸fAFBx<𝑸fxAFB
17 16 ex A𝑷B𝑷x𝑸fAFBx<𝑸fxAFB
18 6 17 syl5 A𝑷B𝑷x<𝑸ffAFBx<𝑸fxAFB
19 18 com34 A𝑷B𝑷x<𝑸fx<𝑸ffAFBxAFB
20 19 pm2.43d A𝑷B𝑷x<𝑸ffAFBxAFB
21 20 com23 A𝑷B𝑷fAFBx<𝑸fxAFB