Metamath Proof Explorer


Theorem gonan0

Description: The "Godel-set of NAND" is a Godel formula of at least height 1. (Contributed by AV, 21-Oct-2023)

Ref Expression
Assertion gonan0 A𝑔BFmlaNN

Proof

Step Hyp Ref Expression
1 1n0 1𝑜
2 1 neii ¬1𝑜=
3 2 intnanr ¬1𝑜=AB=ij
4 1oex 1𝑜V
5 opex ABV
6 4 5 opth 1𝑜AB=ij1𝑜=AB=ij
7 3 6 mtbir ¬1𝑜AB=ij
8 goel iωjωi𝑔j=ij
9 8 eqeq2d iωjω1𝑜AB=i𝑔j1𝑜AB=ij
10 7 9 mtbiri iωjω¬1𝑜AB=i𝑔j
11 10 rgen2 iωjω¬1𝑜AB=i𝑔j
12 ralnex2 iωjω¬1𝑜AB=i𝑔j¬iωjω1𝑜AB=i𝑔j
13 11 12 mpbi ¬iωjω1𝑜AB=i𝑔j
14 13 intnan ¬1𝑜ABViωjω1𝑜AB=i𝑔j
15 eqeq1 x=1𝑜ABx=i𝑔j1𝑜AB=i𝑔j
16 15 2rexbidv x=1𝑜ABiωjωx=i𝑔jiωjω1𝑜AB=i𝑔j
17 fmla0 Fmla=xV|iωjωx=i𝑔j
18 16 17 elrab2 1𝑜ABFmla1𝑜ABViωjω1𝑜AB=i𝑔j
19 14 18 mtbir ¬1𝑜ABFmla
20 gonafv AVBVA𝑔B=1𝑜AB
21 20 eleq1d AVBVA𝑔BFmla1𝑜ABFmla
22 19 21 mtbiri AVBV¬A𝑔BFmla
23 eqid xV×V1𝑜x=xV×V1𝑜x
24 23 dmmptss domxV×V1𝑜xV×V
25 relxp RelV×V
26 relss domxV×V1𝑜xV×VRelV×VReldomxV×V1𝑜x
27 24 25 26 mp2 ReldomxV×V1𝑜x
28 df-gona 𝑔=xV×V1𝑜x
29 28 dmeqi dom𝑔=domxV×V1𝑜x
30 29 releqi Reldom𝑔ReldomxV×V1𝑜x
31 27 30 mpbir Reldom𝑔
32 31 ovprc ¬AVBVA𝑔B=
33 peano1 ω
34 fmlaomn0 ωFmla
35 33 34 ax-mp Fmla
36 35 neli ¬Fmla
37 eleq1 A𝑔B=A𝑔BFmlaFmla
38 36 37 mtbiri A𝑔B=¬A𝑔BFmla
39 32 38 syl ¬AVBV¬A𝑔BFmla
40 22 39 pm2.61i ¬A𝑔BFmla
41 fveq2 N=FmlaN=Fmla
42 41 eleq2d N=A𝑔BFmlaNA𝑔BFmla
43 40 42 mtbiri N=¬A𝑔BFmlaN
44 43 necon2ai A𝑔BFmlaNN