Metamath Proof Explorer


Theorem gpg3nbgrvtx0ALT

Description: In a generalized Petersen graph G , every vertex of the first kind has exactly three (different) neighbors. (Contributed by AV, 30-Aug-2025) The proof of gpg3nbgrvtx0 can be shortened using lemma gpg3nbgrvtxlem , but then theorem 2ltceilhalf is required which is based on an "example" ex-ceil . If these theorems were moved to main, the "example" should also be moved up to become a full-fledged theorem. (Proof shortened by AV, 4-Sep-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses gpgnbgr.j J = 1 ..^ N 2
gpgnbgr.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgnbgr.v V = Vtx G
gpgnbgr.u U = G NeighbVtx X
Assertion gpg3nbgrvtx0ALT N 3 K J X V 1 st X = 0 U = 3

Proof

Step Hyp Ref Expression
1 gpgnbgr.j J = 1 ..^ N 2
2 gpgnbgr.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
3 gpgnbgr.v V = Vtx G
4 gpgnbgr.u U = G NeighbVtx X
5 1 2 3 4 gpgnbgrvtx0 N 3 K J X V 1 st X = 0 U = 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N
6 5 fveq2d N 3 K J X V 1 st X = 0 U = 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N
7 0ne1 0 1
8 7 a1i N 3 K J X V 1 st X = 0 0 1
9 8 orcd N 3 K J X V 1 st X = 0 0 1 2 nd X + 1 mod N 2 nd X
10 c0ex 0 V
11 ovex 2 nd X + 1 mod N V
12 10 11 opthne 0 2 nd X + 1 mod N 1 2 nd X 0 1 2 nd X + 1 mod N 2 nd X
13 9 12 sylibr N 3 K J X V 1 st X = 0 0 2 nd X + 1 mod N 1 2 nd X
14 ax-1ne0 1 0
15 14 a1i N 3 K J X V 1 st X = 0 1 0
16 15 orcd N 3 K J X V 1 st X = 0 1 0 2 nd X 2 nd X 1 mod N
17 1ex 1 V
18 fvex 2 nd X V
19 17 18 opthne 1 2 nd X 0 2 nd X 1 mod N 1 0 2 nd X 2 nd X 1 mod N
20 16 19 sylibr N 3 K J X V 1 st X = 0 1 2 nd X 0 2 nd X 1 mod N
21 simpll N 3 K J X V 1 st X = 0 N 3
22 2z 2
23 22 a1i N 3 2
24 eluzelre N 3 N
25 24 rehalfcld N 3 N 2
26 25 ceilcld N 3 N 2
27 2ltceilhalf N 3 2 N 2
28 eluz2 N 2 2 2 N 2 2 N 2
29 23 26 27 28 syl3anbrc N 3 N 2 2
30 29 adantr N 3 K J N 2 2
31 30 adantr N 3 K J X V 1 st X = 0 N 2 2
32 fzo1lb 1 1 ..^ N 2 N 2 2
33 31 32 sylibr N 3 K J X V 1 st X = 0 1 1 ..^ N 2
34 eqid 0 ..^ N = 0 ..^ N
35 34 1 2 3 gpgvtxel2 N 3 K J X V 2 nd X 0 ..^ N
36 35 adantrr N 3 K J X V 1 st X = 0 2 nd X 0 ..^ N
37 gpg3nbgrvtxlem N 3 1 1 ..^ N 2 2 nd X 0 ..^ N 2 nd X + 1 mod N 2 nd X 1 mod N
38 21 33 36 37 syl3anc N 3 K J X V 1 st X = 0 2 nd X + 1 mod N 2 nd X 1 mod N
39 38 necomd N 3 K J X V 1 st X = 0 2 nd X 1 mod N 2 nd X + 1 mod N
40 39 olcd N 3 K J X V 1 st X = 0 0 0 2 nd X 1 mod N 2 nd X + 1 mod N
41 ovex 2 nd X 1 mod N V
42 10 41 opthne 0 2 nd X 1 mod N 0 2 nd X + 1 mod N 0 0 2 nd X 1 mod N 2 nd X + 1 mod N
43 40 42 sylibr N 3 K J X V 1 st X = 0 0 2 nd X 1 mod N 0 2 nd X + 1 mod N
44 13 20 43 3jca N 3 K J X V 1 st X = 0 0 2 nd X + 1 mod N 1 2 nd X 1 2 nd X 0 2 nd X 1 mod N 0 2 nd X 1 mod N 0 2 nd X + 1 mod N
45 opex 0 2 nd X + 1 mod N V
46 opex 1 2 nd X V
47 opex 0 2 nd X 1 mod N V
48 hashtpg 0 2 nd X + 1 mod N V 1 2 nd X V 0 2 nd X 1 mod N V 0 2 nd X + 1 mod N 1 2 nd X 1 2 nd X 0 2 nd X 1 mod N 0 2 nd X 1 mod N 0 2 nd X + 1 mod N 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N = 3
49 45 46 47 48 mp3an 0 2 nd X + 1 mod N 1 2 nd X 1 2 nd X 0 2 nd X 1 mod N 0 2 nd X 1 mod N 0 2 nd X + 1 mod N 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N = 3
50 44 49 sylib N 3 K J X V 1 st X = 0 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N = 3
51 6 50 eqtrd N 3 K J X V 1 st X = 0 U = 3