Metamath Proof Explorer


Theorem gpg3nbgrvtx0ALT

Description: In a generalized Petersen graph G , every outside vertex has exactly three (different) neighbors. (Contributed by AV, 30-Aug-2025)

The proof of gpg3nbgrvtx0 can be shortened using modmknepk , but then theorem 2ltceilhalf is required which is based on an "example" ex-ceil . If these theorems were moved to main, the "example" should also be moved up to become a full-fledged theorem. (Proof shortened by AV, 4-Sep-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses gpgnbgr.j J = 1 ..^ N 2
gpgnbgr.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgnbgr.v V = Vtx G
gpgnbgr.u U = G NeighbVtx X
Assertion gpg3nbgrvtx0ALT N 3 K J X V 1 st X = 0 U = 3

Proof

Step Hyp Ref Expression
1 gpgnbgr.j J = 1 ..^ N 2
2 gpgnbgr.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
3 gpgnbgr.v V = Vtx G
4 gpgnbgr.u U = G NeighbVtx X
5 1 2 3 4 gpgnbgrvtx0 N 3 K J X V 1 st X = 0 U = 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N
6 5 fveq2d N 3 K J X V 1 st X = 0 U = 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N
7 0ne1 0 1
8 7 a1i N 3 K J X V 1 st X = 0 0 1
9 8 orcd N 3 K J X V 1 st X = 0 0 1 2 nd X + 1 mod N 2 nd X
10 c0ex 0 V
11 ovex 2 nd X + 1 mod N V
12 10 11 opthne 0 2 nd X + 1 mod N 1 2 nd X 0 1 2 nd X + 1 mod N 2 nd X
13 9 12 sylibr N 3 K J X V 1 st X = 0 0 2 nd X + 1 mod N 1 2 nd X
14 ax-1ne0 1 0
15 14 a1i N 3 K J X V 1 st X = 0 1 0
16 15 orcd N 3 K J X V 1 st X = 0 1 0 2 nd X 2 nd X 1 mod N
17 1ex 1 V
18 fvex 2 nd X V
19 17 18 opthne 1 2 nd X 0 2 nd X 1 mod N 1 0 2 nd X 2 nd X 1 mod N
20 16 19 sylibr N 3 K J X V 1 st X = 0 1 2 nd X 0 2 nd X 1 mod N
21 simpll N 3 K J X V 1 st X = 0 N 3
22 eqid 0 ..^ N = 0 ..^ N
23 22 1 2 3 gpgvtxel2 N 3 K J X V 2 nd X 0 ..^ N
24 23 adantrr N 3 K J X V 1 st X = 0 2 nd X 0 ..^ N
25 2z 2
26 25 a1i N 3 2
27 eluzelre N 3 N
28 27 rehalfcld N 3 N 2
29 28 ceilcld N 3 N 2
30 2ltceilhalf N 3 2 N 2
31 eluz2 N 2 2 2 N 2 2 N 2
32 26 29 30 31 syl3anbrc N 3 N 2 2
33 fzo1lb 1 1 ..^ N 2 N 2 2
34 32 33 sylibr N 3 1 1 ..^ N 2
35 34 ad2antrr N 3 K J X V 1 st X = 0 1 1 ..^ N 2
36 eqid 1 ..^ N 2 = 1 ..^ N 2
37 36 22 modmknepk N 3 2 nd X 0 ..^ N 1 1 ..^ N 2 2 nd X 1 mod N 2 nd X + 1 mod N
38 21 24 35 37 syl3anc N 3 K J X V 1 st X = 0 2 nd X 1 mod N 2 nd X + 1 mod N
39 38 olcd N 3 K J X V 1 st X = 0 0 0 2 nd X 1 mod N 2 nd X + 1 mod N
40 ovex 2 nd X 1 mod N V
41 10 40 opthne 0 2 nd X 1 mod N 0 2 nd X + 1 mod N 0 0 2 nd X 1 mod N 2 nd X + 1 mod N
42 39 41 sylibr N 3 K J X V 1 st X = 0 0 2 nd X 1 mod N 0 2 nd X + 1 mod N
43 13 20 42 3jca N 3 K J X V 1 st X = 0 0 2 nd X + 1 mod N 1 2 nd X 1 2 nd X 0 2 nd X 1 mod N 0 2 nd X 1 mod N 0 2 nd X + 1 mod N
44 opex 0 2 nd X + 1 mod N V
45 opex 1 2 nd X V
46 opex 0 2 nd X 1 mod N V
47 hashtpg 0 2 nd X + 1 mod N V 1 2 nd X V 0 2 nd X 1 mod N V 0 2 nd X + 1 mod N 1 2 nd X 1 2 nd X 0 2 nd X 1 mod N 0 2 nd X 1 mod N 0 2 nd X + 1 mod N 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N = 3
48 44 45 46 47 mp3an 0 2 nd X + 1 mod N 1 2 nd X 1 2 nd X 0 2 nd X 1 mod N 0 2 nd X 1 mod N 0 2 nd X + 1 mod N 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N = 3
49 43 48 sylib N 3 K J X V 1 st X = 0 0 2 nd X + 1 mod N 1 2 nd X 0 2 nd X 1 mod N = 3
50 6 49 eqtrd N 3 K J X V 1 st X = 0 U = 3