Metamath Proof Explorer


Theorem gpgcubic

Description: Every generalized Petersen graph is acubic graph, i.e., it is a 3-regular graph, i.e., every vertex has degree 3 (see gpgvtxdg3 ), i.e., every vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025)

Ref Expression
Hypotheses gpgnbgr.j J = 1 ..^ N 2
gpgnbgr.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgnbgr.v V = Vtx G
gpgnbgr.u U = G NeighbVtx X
Assertion gpgcubic N 3 K J X V U = 3

Proof

Step Hyp Ref Expression
1 gpgnbgr.j J = 1 ..^ N 2
2 gpgnbgr.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
3 gpgnbgr.v V = Vtx G
4 gpgnbgr.u U = G NeighbVtx X
5 eqid 0 ..^ N = 0 ..^ N
6 5 1 2 3 gpgvtxel N 3 K J X V x 0 1 y 0 ..^ N X = x y
7 6 biimp3a N 3 K J X V x 0 1 y 0 ..^ N X = x y
8 elpri x 0 1 x = 0 x = 1
9 opeq1 x = 0 x y = 0 y
10 9 eqeq2d x = 0 X = x y X = 0 y
11 10 adantr x = 0 N 3 K J X V X = x y X = 0 y
12 c0ex 0 V
13 vex y V
14 12 13 op1std X = 0 y 1 st X = 0
15 1 2 3 4 gpg3nbgrvtx0 N 3 K J X V 1 st X = 0 U = 3
16 15 exp43 N 3 K J X V 1 st X = 0 U = 3
17 16 3imp N 3 K J X V 1 st X = 0 U = 3
18 14 17 syl5 N 3 K J X V X = 0 y U = 3
19 18 adantl x = 0 N 3 K J X V X = 0 y U = 3
20 11 19 sylbid x = 0 N 3 K J X V X = x y U = 3
21 20 ex x = 0 N 3 K J X V X = x y U = 3
22 opeq1 x = 1 x y = 1 y
23 22 eqeq2d x = 1 X = x y X = 1 y
24 23 adantr x = 1 N 3 K J X V X = x y X = 1 y
25 1ex 1 V
26 25 13 op1std X = 1 y 1 st X = 1
27 1 2 3 4 gpg3nbgrvtx1 N 3 K J X V 1 st X = 1 U = 3
28 27 exp43 N 3 K J X V 1 st X = 1 U = 3
29 28 3imp N 3 K J X V 1 st X = 1 U = 3
30 26 29 syl5 N 3 K J X V X = 1 y U = 3
31 30 adantl x = 1 N 3 K J X V X = 1 y U = 3
32 24 31 sylbid x = 1 N 3 K J X V X = x y U = 3
33 32 ex x = 1 N 3 K J X V X = x y U = 3
34 21 33 jaoi x = 0 x = 1 N 3 K J X V X = x y U = 3
35 8 34 syl x 0 1 N 3 K J X V X = x y U = 3
36 35 impcom N 3 K J X V x 0 1 X = x y U = 3
37 36 a1d N 3 K J X V x 0 1 y 0 ..^ N X = x y U = 3
38 37 expimpd N 3 K J X V x 0 1 y 0 ..^ N X = x y U = 3
39 38 rexlimdvv N 3 K J X V x 0 1 y 0 ..^ N X = x y U = 3
40 7 39 mpd N 3 K J X V U = 3