Metamath Proof Explorer


Theorem gpgiedgdmellem

Description: Lemma for gpgiedgdmel and gpgedgel . (Contributed by AV, 2-Nov-2025)

Ref Expression
Hypotheses gpgvtxel.i I = 0 ..^ N
gpgvtxel.j J = 1 ..^ N 2
Assertion gpgiedgdmellem N K J x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I

Proof

Step Hyp Ref Expression
1 gpgvtxel.i I = 0 ..^ N
2 gpgvtxel.j J = 1 ..^ N 2
3 prex 0 x 0 x + 1 mod N V
4 3 a1i N K J x I 0 x 0 x + 1 mod N V
5 c0ex 0 V
6 5 prid1 0 0 1
7 6 a1i N K J x I 0 0 1
8 simpr N K J x I x I
9 7 8 opelxpd N K J x I 0 x 0 1 × I
10 elfzoelz x 0 ..^ N x
11 10 1 eleq2s x I x
12 11 adantl N K J x I x
13 12 peano2zd N K J x I x + 1
14 simpll N K J x I N
15 zmodfzo x + 1 N x + 1 mod N 0 ..^ N
16 13 14 15 syl2anc N K J x I x + 1 mod N 0 ..^ N
17 16 1 eleqtrrdi N K J x I x + 1 mod N I
18 7 17 opelxpd N K J x I 0 x + 1 mod N 0 1 × I
19 9 18 prssd N K J x I 0 x 0 x + 1 mod N 0 1 × I
20 4 19 elpwd N K J x I 0 x 0 x + 1 mod N 𝒫 0 1 × I
21 eleq1 Y = 0 x 0 x + 1 mod N Y 𝒫 0 1 × I 0 x 0 x + 1 mod N 𝒫 0 1 × I
22 20 21 syl5ibrcom N K J x I Y = 0 x 0 x + 1 mod N Y 𝒫 0 1 × I
23 prex 0 x 1 x V
24 23 a1i N K J x I 0 x 1 x V
25 1ex 1 V
26 25 prid2 1 0 1
27 26 a1i N K J x I 1 0 1
28 27 8 opelxpd N K J x I 1 x 0 1 × I
29 9 28 prssd N K J x I 0 x 1 x 0 1 × I
30 24 29 elpwd N K J x I 0 x 1 x 𝒫 0 1 × I
31 eleq1 Y = 0 x 1 x Y 𝒫 0 1 × I 0 x 1 x 𝒫 0 1 × I
32 30 31 syl5ibrcom N K J x I Y = 0 x 1 x Y 𝒫 0 1 × I
33 prex 1 x 1 x + K mod N V
34 33 a1i N K J x I 1 x 1 x + K mod N V
35 elfzoelz K 1 ..^ N 2 K
36 35 2 eleq2s K J K
37 36 ad2antlr N K J x I K
38 12 37 zaddcld N K J x I x + K
39 zmodfzo x + K N x + K mod N 0 ..^ N
40 38 14 39 syl2anc N K J x I x + K mod N 0 ..^ N
41 40 1 eleqtrrdi N K J x I x + K mod N I
42 27 41 opelxpd N K J x I 1 x + K mod N 0 1 × I
43 28 42 prssd N K J x I 1 x 1 x + K mod N 0 1 × I
44 34 43 elpwd N K J x I 1 x 1 x + K mod N 𝒫 0 1 × I
45 eleq1 Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I 1 x 1 x + K mod N 𝒫 0 1 × I
46 44 45 syl5ibrcom N K J x I Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I
47 22 32 46 3jaod N K J x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I
48 47 rexlimdva N K J x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I