Metamath Proof Explorer


Theorem grlicref

Description: Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025)

Ref Expression
Assertion grlicref G UHGraph G 𝑙𝑔𝑟 G

Proof

Step Hyp Ref Expression
1 fvexd G UHGraph Vtx G V
2 1 resiexd G UHGraph I Vtx G V
3 eqid Vtx G = Vtx G
4 3 clnbgrssvtx G ClNeighbVtx v Vtx G
5 4 a1i v Vtx G G ClNeighbVtx v Vtx G
6 3 isubgruhgr G UHGraph G ClNeighbVtx v Vtx G G ISubGr G ClNeighbVtx v UHGraph
7 5 6 sylan2 G UHGraph v Vtx G G ISubGr G ClNeighbVtx v UHGraph
8 gricref G ISubGr G ClNeighbVtx v UHGraph G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx v
9 7 8 syl G UHGraph v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx v
10 9 ralrimiva G UHGraph v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx v
11 f1oi I Vtx G : Vtx G 1-1 onto Vtx G
12 10 11 jctil G UHGraph I Vtx G : Vtx G 1-1 onto Vtx G v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx v
13 f1oeq1 f = I Vtx G f : Vtx G 1-1 onto Vtx G I Vtx G : Vtx G 1-1 onto Vtx G
14 fveq1 f = I Vtx G f v = I Vtx G v
15 14 oveq2d f = I Vtx G G ClNeighbVtx f v = G ClNeighbVtx I Vtx G v
16 15 oveq2d f = I Vtx G G ISubGr G ClNeighbVtx f v = G ISubGr G ClNeighbVtx I Vtx G v
17 16 breq2d f = I Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx f v G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx I Vtx G v
18 fvresi v Vtx G I Vtx G v = v
19 18 oveq2d v Vtx G G ClNeighbVtx I Vtx G v = G ClNeighbVtx v
20 19 oveq2d v Vtx G G ISubGr G ClNeighbVtx I Vtx G v = G ISubGr G ClNeighbVtx v
21 20 breq2d v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx I Vtx G v G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx v
22 17 21 sylan9bb f = I Vtx G v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx f v G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx v
23 22 ralbidva f = I Vtx G v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx f v v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx v
24 13 23 anbi12d f = I Vtx G f : Vtx G 1-1 onto Vtx G v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx f v I Vtx G : Vtx G 1-1 onto Vtx G v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx v
25 2 12 24 spcedv G UHGraph f f : Vtx G 1-1 onto Vtx G v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx f v
26 3 3 dfgrlic2 G UHGraph G UHGraph G 𝑙𝑔𝑟 G f f : Vtx G 1-1 onto Vtx G v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx f v
27 26 anidms G UHGraph G 𝑙𝑔𝑟 G f f : Vtx G 1-1 onto Vtx G v Vtx G G ISubGr G ClNeighbVtx v 𝑔𝑟 G ISubGr G ClNeighbVtx f v
28 25 27 mpbird G UHGraph G 𝑙𝑔𝑟 G