Metamath Proof Explorer


Theorem grlimprclnbgredg

Description: For two locally isomorphic graphs G and H and a vertex A of G there is a bijection f mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge between the vertices in M . (Contributed by AV, 27-Dec-2025)

Ref Expression
Hypotheses clnbgrvtxedg.n N = G ClNeighbVtx A
clnbgrvtxedg.i I = Edg G
clnbgrvtxedg.k K = x I | x N
grlimedgclnbgr.m M = H ClNeighbVtx F A
grlimedgclnbgr.j J = Edg H
grlimedgclnbgr.l L = x J | x M
Assertion grlimprclnbgredg G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f f : N 1-1 onto M f A f B L

Proof

Step Hyp Ref Expression
1 clnbgrvtxedg.n N = G ClNeighbVtx A
2 clnbgrvtxedg.i I = Edg G
3 clnbgrvtxedg.k K = x I | x N
4 grlimedgclnbgr.m M = H ClNeighbVtx F A
5 grlimedgclnbgr.j J = Edg H
6 grlimedgclnbgr.l L = x J | x M
7 1 2 3 4 5 6 grlimprclnbgr G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f g f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B
8 simpr1 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B f : N 1-1 onto M
9 f1of g : K 1-1 onto L g : K L
10 9 3ad2ant2 f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B g : K L
11 10 adantl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B g : K L
12 uspgruhgr G USHGraph G UHGraph
13 12 adantr G USHGraph H USHGraph G UHGraph
14 13 3ad2ant1 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I G UHGraph
15 simp33 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I A B I
16 prid1g A V A A B
17 16 3ad2ant1 A V B W A B I A A B
18 17 3ad2ant3 G USHGraph H USHGraph F G GraphLocIso H A V B W A B I A A B
19 14 15 18 3jca G USHGraph H USHGraph F G GraphLocIso H A V B W A B I G UHGraph A B I A A B
20 19 adantr G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B G UHGraph A B I A A B
21 1 2 3 clnbgrvtxedg G UHGraph A B I A A B A B K
22 20 21 syl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B A B K
23 11 22 ffvelcdmd G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B g A B L
24 eleq1 f A f B = g A B f A f B L g A B L
25 24 3ad2ant3 f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B f A f B L g A B L
26 25 adantl G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B f A f B L g A B L
27 23 26 mpbird G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B f A f B L
28 8 27 jca G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B f : N 1-1 onto M f A f B L
29 28 ex G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B f : N 1-1 onto M f A f B L
30 29 exlimdv G USHGraph H USHGraph F G GraphLocIso H A V B W A B I g f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B f : N 1-1 onto M f A f B L
31 30 eximdv G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f g f : N 1-1 onto M g : K 1-1 onto L f A f B = g A B f f : N 1-1 onto M f A f B L
32 7 31 mpd G USHGraph H USHGraph F G GraphLocIso H A V B W A B I f f : N 1-1 onto M f A f B L