Description: Sumset with the identity singleton is the original set. (Contributed by Thierry Arnoux, 27-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grplsm0l.b | |
|
grplsm0l.p | |
||
grplsm0l.0 | |
||
Assertion | grplsm0l | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplsm0l.b | |
|
2 | grplsm0l.p | |
|
3 | grplsm0l.0 | |
|
4 | 1 3 | grpidcl | |
5 | 4 | snssd | |
6 | eqid | |
|
7 | 1 6 2 | lsmelvalx | |
8 | 7 | 3expa | |
9 | 8 | an32s | |
10 | 5 9 | mpidan | |
11 | 10 | 3adant3 | |
12 | simpl1 | |
|
13 | simp2 | |
|
14 | 13 | sselda | |
15 | 1 6 3 | grplid | |
16 | 12 14 15 | syl2anc | |
17 | 16 | eqeq2d | |
18 | equcom | |
|
19 | 17 18 | bitrdi | |
20 | 19 | rexbidva | |
21 | 3 | fvexi | |
22 | oveq1 | |
|
23 | 22 | eqeq2d | |
24 | 23 | rexbidv | |
25 | 21 24 | rexsn | |
26 | risset | |
|
27 | 20 25 26 | 3bitr4g | |
28 | 11 27 | bitrd | |
29 | 28 | eqrdv | |