Metamath Proof Explorer


Theorem grplsm0l

Description: Sumset with the identity singleton is the original set. (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypotheses grplsm0l.b B=BaseG
grplsm0l.p ˙=LSSumG
grplsm0l.0 0˙=0G
Assertion grplsm0l GGrpABA0˙˙A=A

Proof

Step Hyp Ref Expression
1 grplsm0l.b B=BaseG
2 grplsm0l.p ˙=LSSumG
3 grplsm0l.0 0˙=0G
4 1 3 grpidcl GGrp0˙B
5 4 snssd GGrp0˙B
6 eqid +G=+G
7 1 6 2 lsmelvalx GGrp0˙BABx0˙˙Ao0˙aAx=o+Ga
8 7 3expa GGrp0˙BABx0˙˙Ao0˙aAx=o+Ga
9 8 an32s GGrpAB0˙Bx0˙˙Ao0˙aAx=o+Ga
10 5 9 mpidan GGrpABx0˙˙Ao0˙aAx=o+Ga
11 10 3adant3 GGrpABAx0˙˙Ao0˙aAx=o+Ga
12 simpl1 GGrpABAaAGGrp
13 simp2 GGrpABAAB
14 13 sselda GGrpABAaAaB
15 1 6 3 grplid GGrpaB0˙+Ga=a
16 12 14 15 syl2anc GGrpABAaA0˙+Ga=a
17 16 eqeq2d GGrpABAaAx=0˙+Gax=a
18 equcom x=aa=x
19 17 18 bitrdi GGrpABAaAx=0˙+Gaa=x
20 19 rexbidva GGrpABAaAx=0˙+GaaAa=x
21 3 fvexi 0˙V
22 oveq1 o=0˙o+Ga=0˙+Ga
23 22 eqeq2d o=0˙x=o+Gax=0˙+Ga
24 23 rexbidv o=0˙aAx=o+GaaAx=0˙+Ga
25 21 24 rexsn o0˙aAx=o+GaaAx=0˙+Ga
26 risset xAaAa=x
27 20 25 26 3bitr4g GGrpABAo0˙aAx=o+GaxA
28 11 27 bitrd GGrpABAx0˙˙AxA
29 28 eqrdv GGrpABA0˙˙A=A