Metamath Proof Explorer


Theorem grplsm0l

Description: Sumset with the identity singleton is the original set. (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypotheses grplsm0l.b
|- B = ( Base ` G )
grplsm0l.p
|- .(+) = ( LSSum ` G )
grplsm0l.0
|- .0. = ( 0g ` G )
Assertion grplsm0l
|- ( ( G e. Grp /\ A C_ B /\ A =/= (/) ) -> ( { .0. } .(+) A ) = A )

Proof

Step Hyp Ref Expression
1 grplsm0l.b
 |-  B = ( Base ` G )
2 grplsm0l.p
 |-  .(+) = ( LSSum ` G )
3 grplsm0l.0
 |-  .0. = ( 0g ` G )
4 1 3 grpidcl
 |-  ( G e. Grp -> .0. e. B )
5 4 snssd
 |-  ( G e. Grp -> { .0. } C_ B )
6 eqid
 |-  ( +g ` G ) = ( +g ` G )
7 1 6 2 lsmelvalx
 |-  ( ( G e. Grp /\ { .0. } C_ B /\ A C_ B ) -> ( x e. ( { .0. } .(+) A ) <-> E. o e. { .0. } E. a e. A x = ( o ( +g ` G ) a ) ) )
8 7 3expa
 |-  ( ( ( G e. Grp /\ { .0. } C_ B ) /\ A C_ B ) -> ( x e. ( { .0. } .(+) A ) <-> E. o e. { .0. } E. a e. A x = ( o ( +g ` G ) a ) ) )
9 8 an32s
 |-  ( ( ( G e. Grp /\ A C_ B ) /\ { .0. } C_ B ) -> ( x e. ( { .0. } .(+) A ) <-> E. o e. { .0. } E. a e. A x = ( o ( +g ` G ) a ) ) )
10 5 9 mpidan
 |-  ( ( G e. Grp /\ A C_ B ) -> ( x e. ( { .0. } .(+) A ) <-> E. o e. { .0. } E. a e. A x = ( o ( +g ` G ) a ) ) )
11 10 3adant3
 |-  ( ( G e. Grp /\ A C_ B /\ A =/= (/) ) -> ( x e. ( { .0. } .(+) A ) <-> E. o e. { .0. } E. a e. A x = ( o ( +g ` G ) a ) ) )
12 simpl1
 |-  ( ( ( G e. Grp /\ A C_ B /\ A =/= (/) ) /\ a e. A ) -> G e. Grp )
13 simp2
 |-  ( ( G e. Grp /\ A C_ B /\ A =/= (/) ) -> A C_ B )
14 13 sselda
 |-  ( ( ( G e. Grp /\ A C_ B /\ A =/= (/) ) /\ a e. A ) -> a e. B )
15 1 6 3 grplid
 |-  ( ( G e. Grp /\ a e. B ) -> ( .0. ( +g ` G ) a ) = a )
16 12 14 15 syl2anc
 |-  ( ( ( G e. Grp /\ A C_ B /\ A =/= (/) ) /\ a e. A ) -> ( .0. ( +g ` G ) a ) = a )
17 16 eqeq2d
 |-  ( ( ( G e. Grp /\ A C_ B /\ A =/= (/) ) /\ a e. A ) -> ( x = ( .0. ( +g ` G ) a ) <-> x = a ) )
18 equcom
 |-  ( x = a <-> a = x )
19 17 18 bitrdi
 |-  ( ( ( G e. Grp /\ A C_ B /\ A =/= (/) ) /\ a e. A ) -> ( x = ( .0. ( +g ` G ) a ) <-> a = x ) )
20 19 rexbidva
 |-  ( ( G e. Grp /\ A C_ B /\ A =/= (/) ) -> ( E. a e. A x = ( .0. ( +g ` G ) a ) <-> E. a e. A a = x ) )
21 3 fvexi
 |-  .0. e. _V
22 oveq1
 |-  ( o = .0. -> ( o ( +g ` G ) a ) = ( .0. ( +g ` G ) a ) )
23 22 eqeq2d
 |-  ( o = .0. -> ( x = ( o ( +g ` G ) a ) <-> x = ( .0. ( +g ` G ) a ) ) )
24 23 rexbidv
 |-  ( o = .0. -> ( E. a e. A x = ( o ( +g ` G ) a ) <-> E. a e. A x = ( .0. ( +g ` G ) a ) ) )
25 21 24 rexsn
 |-  ( E. o e. { .0. } E. a e. A x = ( o ( +g ` G ) a ) <-> E. a e. A x = ( .0. ( +g ` G ) a ) )
26 risset
 |-  ( x e. A <-> E. a e. A a = x )
27 20 25 26 3bitr4g
 |-  ( ( G e. Grp /\ A C_ B /\ A =/= (/) ) -> ( E. o e. { .0. } E. a e. A x = ( o ( +g ` G ) a ) <-> x e. A ) )
28 11 27 bitrd
 |-  ( ( G e. Grp /\ A C_ B /\ A =/= (/) ) -> ( x e. ( { .0. } .(+) A ) <-> x e. A ) )
29 28 eqrdv
 |-  ( ( G e. Grp /\ A C_ B /\ A =/= (/) ) -> ( { .0. } .(+) A ) = A )