Metamath Proof Explorer


Theorem grpoinveu

Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypotheses grpoinveu.1 X=ranG
grpoinveu.2 U=GIdG
Assertion grpoinveu GGrpOpAX∃!yXyGA=U

Proof

Step Hyp Ref Expression
1 grpoinveu.1 X=ranG
2 grpoinveu.2 U=GIdG
3 1 2 grpoidinv2 GGrpOpAXUGA=AAGU=AyXyGA=UAGy=U
4 simpl yGA=UAGy=UyGA=U
5 4 reximi yXyGA=UAGy=UyXyGA=U
6 5 adantl UGA=AAGU=AyXyGA=UAGy=UyXyGA=U
7 3 6 syl GGrpOpAXyXyGA=U
8 eqtr3 yGA=UzGA=UyGA=zGA
9 1 grporcan GGrpOpyXzXAXyGA=zGAy=z
10 8 9 imbitrid GGrpOpyXzXAXyGA=UzGA=Uy=z
11 10 3exp2 GGrpOpyXzXAXyGA=UzGA=Uy=z
12 11 com24 GGrpOpAXzXyXyGA=UzGA=Uy=z
13 12 imp41 GGrpOpAXzXyXyGA=UzGA=Uy=z
14 13 an32s GGrpOpAXyXzXyGA=UzGA=Uy=z
15 14 expd GGrpOpAXyXzXyGA=UzGA=Uy=z
16 15 ralrimdva GGrpOpAXyXyGA=UzXzGA=Uy=z
17 16 ancld GGrpOpAXyXyGA=UyGA=UzXzGA=Uy=z
18 17 reximdva GGrpOpAXyXyGA=UyXyGA=UzXzGA=Uy=z
19 7 18 mpd GGrpOpAXyXyGA=UzXzGA=Uy=z
20 oveq1 y=zyGA=zGA
21 20 eqeq1d y=zyGA=UzGA=U
22 21 reu8 ∃!yXyGA=UyXyGA=UzXzGA=Uy=z
23 19 22 sylibr GGrpOpAX∃!yXyGA=U