Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpoinveu.1 | |
|
grpoinveu.2 | |
||
Assertion | grpoinveu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpoinveu.1 | |
|
2 | grpoinveu.2 | |
|
3 | 1 2 | grpoidinv2 | |
4 | simpl | |
|
5 | 4 | reximi | |
6 | 5 | adantl | |
7 | 3 6 | syl | |
8 | eqtr3 | |
|
9 | 1 | grporcan | |
10 | 8 9 | imbitrid | |
11 | 10 | 3exp2 | |
12 | 11 | com24 | |
13 | 12 | imp41 | |
14 | 13 | an32s | |
15 | 14 | expd | |
16 | 15 | ralrimdva | |
17 | 16 | ancld | |
18 | 17 | reximdva | |
19 | 7 18 | mpd | |
20 | oveq1 | |
|
21 | 20 | eqeq1d | |
22 | 21 | reu8 | |
23 | 19 22 | sylibr | |