Metamath Proof Explorer


Theorem grprida

Description: Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013) (Proof shortened by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses grprinvlem.c φxByBx+˙yB
grprinvlem.o φOB
grprinvlem.i φxBO+˙x=x
grprinvlem.a φxByBzBx+˙y+˙z=x+˙y+˙z
grprinvlem.n φxByBy+˙x=O
Assertion grprida φxBx+˙O=x

Proof

Step Hyp Ref Expression
1 grprinvlem.c φxByBx+˙yB
2 grprinvlem.o φOB
3 grprinvlem.i φxBO+˙x=x
4 grprinvlem.a φxByBzBx+˙y+˙z=x+˙y+˙z
5 grprinvlem.n φxByBy+˙x=O
6 oveq1 y=ny+˙x=n+˙x
7 6 eqeq1d y=ny+˙x=On+˙x=O
8 7 cbvrexvw yBy+˙x=OnBn+˙x=O
9 5 8 sylib φxBnBn+˙x=O
10 4 caovassg φuBvBwBu+˙v+˙w=u+˙v+˙w
11 10 adantlr φxBnBn+˙x=OuBvBwBu+˙v+˙w=u+˙v+˙w
12 simprl φxBnBn+˙x=OxB
13 simprrl φxBnBn+˙x=OnB
14 11 12 13 12 caovassd φxBnBn+˙x=Ox+˙n+˙x=x+˙n+˙x
15 simprrr φxBnBn+˙x=On+˙x=O
16 1 2 3 4 5 12 13 15 grpinva φxBnBn+˙x=Ox+˙n=O
17 16 oveq1d φxBnBn+˙x=Ox+˙n+˙x=O+˙x
18 15 oveq2d φxBnBn+˙x=Ox+˙n+˙x=x+˙O
19 14 17 18 3eqtr3d φxBnBn+˙x=OO+˙x=x+˙O
20 19 anassrs φxBnBn+˙x=OO+˙x=x+˙O
21 9 20 rexlimddv φxBO+˙x=x+˙O
22 21 3 eqtr3d φxBx+˙O=x