Description: Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013) (Proof shortened by Mario Carneiro, 6-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grprinvlem.c | |
|
grprinvlem.o | |
||
grprinvlem.i | |
||
grprinvlem.a | |
||
grprinvlem.n | |
||
Assertion | grprida | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grprinvlem.c | |
|
2 | grprinvlem.o | |
|
3 | grprinvlem.i | |
|
4 | grprinvlem.a | |
|
5 | grprinvlem.n | |
|
6 | oveq1 | |
|
7 | 6 | eqeq1d | |
8 | 7 | cbvrexvw | |
9 | 5 8 | sylib | |
10 | 4 | caovassg | |
11 | 10 | adantlr | |
12 | simprl | |
|
13 | simprrl | |
|
14 | 11 12 13 12 | caovassd | |
15 | simprrr | |
|
16 | 1 2 3 4 5 12 13 15 | grpinva | |
17 | 16 | oveq1d | |
18 | 15 | oveq2d | |
19 | 14 17 18 | 3eqtr3d | |
20 | 19 | anassrs | |
21 | 9 20 | rexlimddv | |
22 | 21 3 | eqtr3d | |