Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 4-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumdifsndf.k | |
|
gsumdifsndf.n | |
||
gsumdifsndf.b | |
||
gsumdifsndf.p | |
||
gsumdifsndf.g | |
||
gsumdifsndf.a | |
||
gsumdifsndf.f | |
||
gsumdifsndf.e | |
||
gsumdifsndf.m | |
||
gsumdifsndf.y | |
||
gsumdifsndf.s | |
||
Assertion | gsumdifsndf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumdifsndf.k | |
|
2 | gsumdifsndf.n | |
|
3 | gsumdifsndf.b | |
|
4 | gsumdifsndf.p | |
|
5 | gsumdifsndf.g | |
|
6 | gsumdifsndf.a | |
|
7 | gsumdifsndf.f | |
|
8 | gsumdifsndf.e | |
|
9 | gsumdifsndf.m | |
|
10 | gsumdifsndf.y | |
|
11 | gsumdifsndf.s | |
|
12 | eqid | |
|
13 | 9 | snssd | |
14 | difin2 | |
|
15 | 13 14 | syl | |
16 | difid | |
|
17 | 15 16 | eqtr3di | |
18 | difsnid | |
|
19 | 9 18 | syl | |
20 | 19 | eqcomd | |
21 | 2 3 12 4 5 6 8 7 17 20 | gsumsplit2f | |
22 | cmnmnd | |
|
23 | 5 22 | syl | |
24 | 3 23 9 10 11 2 1 | gsumsnfd | |
25 | 24 | oveq2d | |
26 | 21 25 | eqtrd | |