Metamath Proof Explorer


Theorem gsuminv

Description: Inverse of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 4-May-2015) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsuminv.b B=BaseG
gsuminv.z 0˙=0G
gsuminv.p I=invgG
gsuminv.g φGAbel
gsuminv.a φAV
gsuminv.f φF:AB
gsuminv.n φfinSupp0˙F
Assertion gsuminv φGIF=IGF

Proof

Step Hyp Ref Expression
1 gsuminv.b B=BaseG
2 gsuminv.z 0˙=0G
3 gsuminv.p I=invgG
4 gsuminv.g φGAbel
5 gsuminv.a φAV
6 gsuminv.f φF:AB
7 gsuminv.n φfinSupp0˙F
8 ablcmn GAbelGCMnd
9 4 8 syl φGCMnd
10 cmnmnd GCMndGMnd
11 9 10 syl φGMnd
12 1 3 invghm GAbelIGGrpHomG
13 4 12 sylib φIGGrpHomG
14 ghmmhm IGGrpHomGIGMndHomG
15 13 14 syl φIGMndHomG
16 1 2 9 11 5 15 6 7 gsummhm φGIF=IGF