Metamath Proof Explorer


Theorem gsumncl

Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses gsumncl.k K = Base M
gsumncl.w φ M Mnd
gsumncl.p φ P N
gsumncl.b φ k N P B K
Assertion gsumncl φ M k = N P B K

Proof

Step Hyp Ref Expression
1 gsumncl.k K = Base M
2 gsumncl.w φ M Mnd
3 gsumncl.p φ P N
4 gsumncl.b φ k N P B K
5 eqid + M = + M
6 4 fmpttd φ k N P B : N P K
7 1 5 2 3 6 gsumval2 φ M k = N P B = seq N + M k N P B P
8 6 ffvelrnda φ x N P k N P B x K
9 2 adantr φ x K y K M Mnd
10 simprl φ x K y K x K
11 simprr φ x K y K y K
12 1 5 mndcl M Mnd x K y K x + M y K
13 9 10 11 12 syl3anc φ x K y K x + M y K
14 3 8 13 seqcl φ seq N + M k N P B P K
15 7 14 eqeltrd φ M k = N P B K