Description: Group sum of a pair. (Contributed by AV, 6-Dec-2018) (Proof shortened by AV, 28-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumpr.b | |
|
gsumpr.p | |
||
gsumpr.s | |
||
gsumpr.t | |
||
Assertion | gsumpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumpr.b | |
|
2 | gsumpr.p | |
|
3 | gsumpr.s | |
|
4 | gsumpr.t | |
|
5 | simp1 | |
|
6 | prfi | |
|
7 | 6 | a1i | |
8 | vex | |
|
9 | 8 | elpr | |
10 | eleq1a | |
|
11 | 10 | adantr | |
12 | 11 | 3ad2ant3 | |
13 | 3 12 | syl5com | |
14 | eleq1a | |
|
15 | 14 | adantl | |
16 | 15 | 3ad2ant3 | |
17 | 4 16 | syl5com | |
18 | 13 17 | jaoi | |
19 | 9 18 | sylbi | |
20 | 19 | impcom | |
21 | disjsn2 | |
|
22 | 21 | 3ad2ant3 | |
23 | 22 | 3ad2ant2 | |
24 | df-pr | |
|
25 | 24 | a1i | |
26 | eqid | |
|
27 | 1 2 5 7 20 23 25 26 | gsummptfidmsplitres | |
28 | snsspr1 | |
|
29 | resmpt | |
|
30 | 28 29 | mp1i | |
31 | 30 | oveq2d | |
32 | cmnmnd | |
|
33 | simp1 | |
|
34 | simpl | |
|
35 | 1 3 | gsumsn | |
36 | 32 33 34 35 | syl3an | |
37 | 31 36 | eqtrd | |
38 | snsspr2 | |
|
39 | resmpt | |
|
40 | 38 39 | mp1i | |
41 | 40 | oveq2d | |
42 | simp2 | |
|
43 | simpr | |
|
44 | 1 4 | gsumsn | |
45 | 32 42 43 44 | syl3an | |
46 | 41 45 | eqtrd | |
47 | 37 46 | oveq12d | |
48 | 27 47 | eqtrd | |