Metamath Proof Explorer


Theorem gsumpr

Description: Group sum of a pair. (Contributed by AV, 6-Dec-2018) (Proof shortened by AV, 28-Jul-2019)

Ref Expression
Hypotheses gsumpr.b B=BaseG
gsumpr.p +˙=+G
gsumpr.s k=MA=C
gsumpr.t k=NA=D
Assertion gsumpr GCMndMVNWMNCBDBGkMNA=C+˙D

Proof

Step Hyp Ref Expression
1 gsumpr.b B=BaseG
2 gsumpr.p +˙=+G
3 gsumpr.s k=MA=C
4 gsumpr.t k=NA=D
5 simp1 GCMndMVNWMNCBDBGCMnd
6 prfi MNFin
7 6 a1i GCMndMVNWMNCBDBMNFin
8 vex kV
9 8 elpr kMNk=Mk=N
10 eleq1a CBA=CAB
11 10 adantr CBDBA=CAB
12 11 3ad2ant3 GCMndMVNWMNCBDBA=CAB
13 3 12 syl5com k=MGCMndMVNWMNCBDBAB
14 eleq1a DBA=DAB
15 14 adantl CBDBA=DAB
16 15 3ad2ant3 GCMndMVNWMNCBDBA=DAB
17 4 16 syl5com k=NGCMndMVNWMNCBDBAB
18 13 17 jaoi k=Mk=NGCMndMVNWMNCBDBAB
19 9 18 sylbi kMNGCMndMVNWMNCBDBAB
20 19 impcom GCMndMVNWMNCBDBkMNAB
21 disjsn2 MNMN=
22 21 3ad2ant3 MVNWMNMN=
23 22 3ad2ant2 GCMndMVNWMNCBDBMN=
24 df-pr MN=MN
25 24 a1i GCMndMVNWMNCBDBMN=MN
26 eqid kMNA=kMNA
27 1 2 5 7 20 23 25 26 gsummptfidmsplitres GCMndMVNWMNCBDBGkMNA=GkMNAM+˙GkMNAN
28 snsspr1 MMN
29 resmpt MMNkMNAM=kMA
30 28 29 mp1i GCMndMVNWMNCBDBkMNAM=kMA
31 30 oveq2d GCMndMVNWMNCBDBGkMNAM=GkMA
32 cmnmnd GCMndGMnd
33 simp1 MVNWMNMV
34 simpl CBDBCB
35 1 3 gsumsn GMndMVCBGkMA=C
36 32 33 34 35 syl3an GCMndMVNWMNCBDBGkMA=C
37 31 36 eqtrd GCMndMVNWMNCBDBGkMNAM=C
38 snsspr2 NMN
39 resmpt NMNkMNAN=kNA
40 38 39 mp1i GCMndMVNWMNCBDBkMNAN=kNA
41 40 oveq2d GCMndMVNWMNCBDBGkMNAN=GkNA
42 simp2 MVNWMNNW
43 simpr CBDBDB
44 1 4 gsumsn GMndNWDBGkNA=D
45 32 42 43 44 syl3an GCMndMVNWMNCBDBGkNA=D
46 41 45 eqtrd GCMndMVNWMNCBDBGkMNAN=D
47 37 46 oveq12d GCMndMVNWMNCBDBGkMNAM+˙GkMNAN=C+˙D
48 27 47 eqtrd GCMndMVNWMNCBDBGkMNA=C+˙D