Metamath Proof Explorer


Theorem gsumprval

Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018)

Ref Expression
Hypotheses gsumprval.b B = Base G
gsumprval.p + ˙ = + G
gsumprval.g φ G V
gsumprval.m φ M
gsumprval.n φ N = M + 1
gsumprval.f φ F : M N B
Assertion gsumprval φ G F = F M + ˙ F N

Proof

Step Hyp Ref Expression
1 gsumprval.b B = Base G
2 gsumprval.p + ˙ = + G
3 gsumprval.g φ G V
4 gsumprval.m φ M
5 gsumprval.n φ N = M + 1
6 gsumprval.f φ F : M N B
7 uzid M M M
8 4 7 syl φ M M
9 peano2uz M M M + 1 M
10 8 9 syl φ M + 1 M
11 fzpr M M M + 1 = M M + 1
12 4 11 syl φ M M + 1 = M M + 1
13 5 eqcomd φ M + 1 = N
14 13 preq2d φ M M + 1 = M N
15 12 14 eqtrd φ M M + 1 = M N
16 15 feq2d φ F : M M + 1 B F : M N B
17 6 16 mpbird φ F : M M + 1 B
18 1 2 3 10 17 gsumval2 φ G F = seq M + ˙ F M + 1
19 seqp1 M M seq M + ˙ F M + 1 = seq M + ˙ F M + ˙ F M + 1
20 8 19 syl φ seq M + ˙ F M + 1 = seq M + ˙ F M + ˙ F M + 1
21 seq1 M seq M + ˙ F M = F M
22 4 21 syl φ seq M + ˙ F M = F M
23 13 fveq2d φ F M + 1 = F N
24 22 23 oveq12d φ seq M + ˙ F M + ˙ F M + 1 = F M + ˙ F N
25 18 20 24 3eqtrd φ G F = F M + ˙ F N