Description: Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in Lang p. 4, first formula. (Contributed by AV, 26-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumsplit1r.b | |
|
gsumsplit1r.p | |
||
gsumsplit1r.g | |
||
gsumsplit1r.m | |
||
gsumsplit1r.n | |
||
gsumsplit1r.f | |
||
Assertion | gsumsplit1r | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsplit1r.b | |
|
2 | gsumsplit1r.p | |
|
3 | gsumsplit1r.g | |
|
4 | gsumsplit1r.m | |
|
5 | gsumsplit1r.n | |
|
6 | gsumsplit1r.f | |
|
7 | peano2uz | |
|
8 | 5 7 | syl | |
9 | 1 2 3 8 6 | gsumval2 | |
10 | seqp1 | |
|
11 | 5 10 | syl | |
12 | fzssp1 | |
|
13 | 12 | a1i | |
14 | 6 13 | fssresd | |
15 | 1 2 3 5 14 | gsumval2 | |
16 | 4 | uzidd | |
17 | seq1 | |
|
18 | 4 17 | syl | |
19 | eluzfz1 | |
|
20 | 5 19 | syl | |
21 | 20 | fvresd | |
22 | 18 21 | eqtrd | |
23 | fzp1ss | |
|
24 | 4 23 | syl | |
25 | 24 | sselda | |
26 | 25 | fvresd | |
27 | 16 22 5 26 | seqfveq2 | |
28 | 15 27 | eqtr2d | |
29 | 28 | oveq1d | |
30 | 9 11 29 | 3eqtrd | |