Metamath Proof Explorer


Theorem gsumsubg

Description: The group sum in a subgroup is the same as the group sum. (Contributed by Thierry Arnoux, 28-May-2023)

Ref Expression
Hypotheses gsumsubg.1 H=G𝑠B
gsumsubg.a φAV
gsumsubg.f φF:AB
gsumsubg.b φBSubGrpG
Assertion gsumsubg φGF=HF

Proof

Step Hyp Ref Expression
1 gsumsubg.1 H=G𝑠B
2 gsumsubg.a φAV
3 gsumsubg.f φF:AB
4 gsumsubg.b φBSubGrpG
5 eqid BaseG=BaseG
6 eqid +G=+G
7 4 elfvexd φGV
8 5 subgss BSubGrpGBBaseG
9 4 8 syl φBBaseG
10 eqid 0G=0G
11 10 subg0cl BSubGrpG0GB
12 4 11 syl φ0GB
13 subgrcl BSubGrpGGGrp
14 4 13 syl φGGrp
15 5 6 10 grplid GGrpxBaseG0G+Gx=x
16 5 6 10 grprid GGrpxBaseGx+G0G=x
17 15 16 jca GGrpxBaseG0G+Gx=xx+G0G=x
18 14 17 sylan φxBaseG0G+Gx=xx+G0G=x
19 5 6 1 7 2 9 3 12 18 gsumress φGF=HF