Metamath Proof Explorer


Theorem gsumws3

Description: Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020)

Ref Expression
Hypotheses gsumws3.0 B=BaseG
gsumws3.1 +˙=+G
Assertion gsumws3 GMndSBTBUBG⟨“STU”⟩=S+˙T+˙U

Proof

Step Hyp Ref Expression
1 gsumws3.0 B=BaseG
2 gsumws3.1 +˙=+G
3 s1s2 ⟨“STU”⟩=⟨“S”⟩++⟨“TU”⟩
4 3 a1i GMndSBTBUB⟨“STU”⟩=⟨“S”⟩++⟨“TU”⟩
5 4 oveq2d GMndSBTBUBG⟨“STU”⟩=G⟨“S”⟩++⟨“TU”⟩
6 simpl GMndSBTBUBGMnd
7 simprl GMndSBTBUBSB
8 7 s1cld GMndSBTBUB⟨“S”⟩WordB
9 simprrl GMndSBTBUBTB
10 simprrr GMndSBTBUBUB
11 9 10 s2cld GMndSBTBUB⟨“TU”⟩WordB
12 1 2 gsumccat GMnd⟨“S”⟩WordB⟨“TU”⟩WordBG⟨“S”⟩++⟨“TU”⟩=G⟨“S”⟩+˙G⟨“TU”⟩
13 6 8 11 12 syl3anc GMndSBTBUBG⟨“S”⟩++⟨“TU”⟩=G⟨“S”⟩+˙G⟨“TU”⟩
14 1 gsumws1 SBG⟨“S”⟩=S
15 14 ad2antrl GMndSBTBUBG⟨“S”⟩=S
16 1 2 gsumws2 GMndTBUBG⟨“TU”⟩=T+˙U
17 16 3expb GMndTBUBG⟨“TU”⟩=T+˙U
18 17 adantrl GMndSBTBUBG⟨“TU”⟩=T+˙U
19 15 18 oveq12d GMndSBTBUBG⟨“S”⟩+˙G⟨“TU”⟩=S+˙T+˙U
20 5 13 19 3eqtrd GMndSBTBUBG⟨“STU”⟩=S+˙T+˙U