Metamath Proof Explorer


Theorem h1de2i

Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 17-Jul-2001) (New usage is discouraged.)

Ref Expression
Hypotheses h1de2.1 A
h1de2.2 B
Assertion h1de2i A B B ih B A = A ih B B

Proof

Step Hyp Ref Expression
1 h1de2.1 A
2 h1de2.2 B
3 2 2 hicli B ih B
4 3 1 hvmulcli B ih B A
5 1 2 hicli A ih B
6 5 2 hvmulcli A ih B B
7 his2sub B ih B A A ih B B A B ih B A - A ih B B ih A = B ih B A ih A A ih B B ih A
8 4 6 1 7 mp3an B ih B A - A ih B B ih A = B ih B A ih A A ih B B ih A
9 ax-his3 B ih B A A B ih B A ih A = B ih B A ih A
10 3 1 1 9 mp3an B ih B A ih A = B ih B A ih A
11 1 1 hicli A ih A
12 3 11 mulcomi B ih B A ih A = A ih A B ih B
13 10 12 eqtri B ih B A ih A = A ih A B ih B
14 ax-his3 A ih B B A A ih B B ih A = A ih B B ih A
15 5 2 1 14 mp3an A ih B B ih A = A ih B B ih A
16 13 15 oveq12i B ih B A ih A A ih B B ih A = A ih A B ih B A ih B B ih A
17 8 16 eqtr2i A ih A B ih B A ih B B ih A = B ih B A - A ih B B ih A
18 his2sub B ih B A A ih B B B B ih B A - A ih B B ih B = B ih B A ih B A ih B B ih B
19 4 6 2 18 mp3an B ih B A - A ih B B ih B = B ih B A ih B A ih B B ih B
20 3 5 mulcomi B ih B A ih B = A ih B B ih B
21 ax-his3 B ih B A B B ih B A ih B = B ih B A ih B
22 3 1 2 21 mp3an B ih B A ih B = B ih B A ih B
23 ax-his3 A ih B B B A ih B B ih B = A ih B B ih B
24 5 2 2 23 mp3an A ih B B ih B = A ih B B ih B
25 20 22 24 3eqtr4i B ih B A ih B = A ih B B ih B
26 4 2 hicli B ih B A ih B
27 6 2 hicli A ih B B ih B
28 26 27 subeq0i B ih B A ih B A ih B B ih B = 0 B ih B A ih B = A ih B B ih B
29 25 28 mpbir B ih B A ih B A ih B B ih B = 0
30 19 29 eqtri B ih B A - A ih B B ih B = 0
31 2 h1dei A B A x B ih x = 0 A ih x = 0
32 1 31 mpbiran A B x B ih x = 0 A ih x = 0
33 4 6 hvsubcli B ih B A - A ih B B
34 oveq2 x = B ih B A - A ih B B B ih x = B ih B ih B A - A ih B B
35 34 eqeq1d x = B ih B A - A ih B B B ih x = 0 B ih B ih B A - A ih B B = 0
36 oveq2 x = B ih B A - A ih B B A ih x = A ih B ih B A - A ih B B
37 36 eqeq1d x = B ih B A - A ih B B A ih x = 0 A ih B ih B A - A ih B B = 0
38 35 37 imbi12d x = B ih B A - A ih B B B ih x = 0 A ih x = 0 B ih B ih B A - A ih B B = 0 A ih B ih B A - A ih B B = 0
39 38 rspcv B ih B A - A ih B B x B ih x = 0 A ih x = 0 B ih B ih B A - A ih B B = 0 A ih B ih B A - A ih B B = 0
40 33 39 ax-mp x B ih x = 0 A ih x = 0 B ih B ih B A - A ih B B = 0 A ih B ih B A - A ih B B = 0
41 32 40 sylbi A B B ih B ih B A - A ih B B = 0 A ih B ih B A - A ih B B = 0
42 orthcom B ih B A - A ih B B B B ih B A - A ih B B ih B = 0 B ih B ih B A - A ih B B = 0
43 33 2 42 mp2an B ih B A - A ih B B ih B = 0 B ih B ih B A - A ih B B = 0
44 orthcom B ih B A - A ih B B A B ih B A - A ih B B ih A = 0 A ih B ih B A - A ih B B = 0
45 33 1 44 mp2an B ih B A - A ih B B ih A = 0 A ih B ih B A - A ih B B = 0
46 41 43 45 3imtr4g A B B ih B A - A ih B B ih B = 0 B ih B A - A ih B B ih A = 0
47 30 46 mpi A B B ih B A - A ih B B ih A = 0
48 17 47 syl5eq A B A ih A B ih B A ih B B ih A = 0
49 11 3 mulcli A ih A B ih B
50 2 1 hicli B ih A
51 5 50 mulcli A ih B B ih A
52 49 51 subeq0i A ih A B ih B A ih B B ih A = 0 A ih A B ih B = A ih B B ih A
53 48 52 sylib A B A ih A B ih B = A ih B B ih A
54 53 eqcomd A B A ih B B ih A = A ih A B ih B
55 1 2 bcseqi A ih B B ih A = A ih A B ih B B ih B A = A ih B B
56 54 55 sylib A B B ih B A = A ih B B