Metamath Proof Explorer


Theorem hashfz

Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014) (Proof shortened by Mario Carneiro, 15-Apr-2015)

Ref Expression
Assertion hashfz BAAB=B-A+1

Proof

Step Hyp Ref Expression
1 eluzel2 BAA
2 eluzelz BAB
3 1z 1
4 zsubcl 1A1A
5 3 1 4 sylancr BA1A
6 fzen AB1AABA+1-AB+1-A
7 1 2 5 6 syl3anc BAABA+1-AB+1-A
8 1 zcnd BAA
9 ax-1cn 1
10 pncan3 A1A+1-A=1
11 8 9 10 sylancl BAA+1-A=1
12 1cnd BA1
13 2 zcnd BAB
14 13 8 subcld BABA
15 13 12 8 addsub12d BAB+1-A=1+B-A
16 12 14 15 comraddd BAB+1-A=B-A+1
17 11 16 oveq12d BAA+1-AB+1-A=1B-A+1
18 7 17 breqtrd BAAB1B-A+1
19 hasheni AB1B-A+1AB=1B-A+1
20 18 19 syl BAAB=1B-A+1
21 uznn0sub BABA0
22 peano2nn0 BA0B-A+10
23 hashfz1 B-A+101B-A+1=B-A+1
24 21 22 23 3syl BA1B-A+1=B-A+1
25 20 24 eqtrd BAAB=B-A+1